Blink Arduino 1.0.5 File Edit Sketch Tools Help	
<pre>// Fin 13 has an LED connected on most Arduino boards. // give it a name: int led = 13; // the setum routine runs.</pre>	ARDUINO
<pre>void setup() { // initialize the digital pin as an output. pinMode(led, OUTPUT); }</pre>	a 22 1 2 2 and a lange of a lange
<pre>// the loop routine runs over and over again forever: void loop() { digitalVrite(led, HIGH); // turn the LED on (HIGH is the voltage 1 delay(1000); // wait for a second digitalVrite(led, LOW); // turn the LED off by making the vol delay(1000); // wait for a second</pre>	and a sub-
Done compiling	A REAL PROPERTY OF A REAL PROPER
Binary sketch size: 1,084 bytes (of a 30,720 b) and Arduino Nano ex Atmessize on Arduino Nano ex Atmessize on	

Bevezetés a mikrovezérlők programozásába: Kommunikáció

Ajánlott irodalom

- Aduino LLC.: <u>Arduino Language Reference</u>
- ATMEL: <u>ATmega328p mikrovezérlő adatlapja</u>
- Brian W. Kernighan, Dennis Ritchie: <u>A C programozási nyelv</u>
- Cseh Róbert: Arduino programozási kézikönyv
- Ruzsinszki Gábor: Mikrovezérlős rendszerfejlesztés C/C++ nyelven I. PIC mikrovezérlők
- Ruzsinszki Gábor: Mikrovezérlős rendszerfejlesztés C/C++ nyelven II. Arduino

Lab 15 projektek

- ASCIITable az ASCII karaktertábla kiíratása
- ReadASCIIString RGB LED vezérlése számítógépről, soros kommunikációval
- Adafruit_webclient webkliens próba: letölt egy weblapot a megadott helyről

Ledblink – LED villogtatás az ESP8266EX mikrovezérlő segítségével.

ThingSpeak_DHT22 – IOT kliens, DHT22 szenzorral, a ThingSpeak szerverhez

A soros port kezelése

A mikrovezérlő soros porti kommunikációjának kezelése a **Serial** osztálykönyvtár használatával történhet. Ennek segítségével kommunikálhat a mikrovezérlő a számítógéppel, vagy más külső eszközzel. Ha a számítógéppel kommunikálunk, akkor az **Arduino** (vagy az **Energia**) fejlesztői környezet beépített monitorablakát használhatjuk az ellenoldali kommunikációra. Fontos, hogy ugyanarra a sebességre állítsuk be, mint amit a programunkban a **Serial.begin()** metódus hívásánál megadtunk.

Az általunk leggyakrabban használt függvények:

begin() – A soros port inicializálása, sebesség megadása pl: Serial.begin(9600); available() – A soros portra beérkezett, még kiolvasatlan karakterek számát adja meg read() – A soron következőt veszi elő a beérkezett karakterek tárolójából (-1, ha nincs ilyen)

parseInt() – Egy egész szám beolvasása (a bevezető nem szám/előjel karaktereket átlépi)
print() - Adatok kiíratása olvasható formában (a számokat karaktersorozattá alakítja)
println() – ugyanaz, mint a print(), csak egy sorvége jelzést hozzáfűz a kiíratás végén
write() – egy karakter kiírása. Példa: Serial.write(65); egy "A" betűt ír ki.

Megjegyzés: A többi függvény leírása itt található: Arduino Reference - Serial

Serial.print() részletesebben

A számokat karaktersorozattá alakítja, a karaktereket és karakterfüzéreket változatlanul hagyja. Például:

Serial.print(78) ===> 78 (alapértelmezett: DEC)
Serial.print(1.23456) ===> 1.23 (alapértelmezett: 2 tizedes)
Serial.print('N') ===> N
Serial.print("Hello world.") ===> Hello world

Egész számok kiíratásánál opcionálisan a kiíratási számrendszer is megadható:

<pre>Serial.print(78,BIN)</pre>	===> 1001110	
<pre>Serial.print(78,OCT)</pre>	===> 116 (64 + 8 + 6 = 78	
<pre>Serial.print(78,DEC)</pre>	===> 78	
<pre>Serial.print(78,HEX)</pre>	==> 4E (0100 1110 = 0x4E))

Lebegőpontos számok (float) kiíratásánál opcionálisan a kiírandó tizedesjegyek száma is megadható:

```
Serial.print(1.23456,0) ===> 1
Serial.print(1.23456,2) ===> 1.23
Serial.print(1.23456,4) ===> 1.2346 (utolsó jegy kerekítve...)
```

ASCIITable.ino

A kiíratást gyakoroljuk. Beépített gyári demo: File/Examples/04. Communication/ASCIITable void setup() { Serial.begin(9600); Serial.println("ASCII Table ~ Character Map"); } int thisByte = 33; //Az első nyomtatható karakter ('!') void loop() { Serial.write(thisByte); //A karakter kiírása Serial.print(", dec: "); //Karakterkód decimálisan Serial.print(thisByte, DEC); //Karakterkód hexadecimálisan Serial.print(", hex: "); Serial.print(thisByte, HEX); //Karakterkód oktálisan Serial.print(", oct: "); Serial.print(thisByte, OCT); //Karakterkód binárisan Serial.print(", bin: "); Serial.println(thisByte, BIN); if(thisByte == 126){ // Az utolső nyomtatható karakter ('~') while(true) { continue; //Végtelen ciklusban RESET-re vár... } } thisByte++; }

RGB LED vezérlése

Vezéreljük egy RGB LED színbeállítását a PC-n beírt számhármassal! Megjegyzés: A kapcsolás közös katódú RGB LED-et feltételez!

RGB LED vezérlése

A terminálablakban beírt három számmal vezéreljük az RGB színkomponenseket. Ehhez értelmeznünk kell a befutó karaktererek sorozatát (fel kell ismerni a többjegyű számokat). Erre a parseInt() függvényt fogjuk használni.

ReadASCIIString.ino

```
const int redPin = 3 //P2_2;
const int greenPin = 6 //P1_6;
const int bluePin = 5 //P2_4;
```

```
Hardverfüggő rész
```

}

```
void setup() {
   Serial.begin(9600);
   pinMode(redPin, OUTPUT);
   pinMode(greenPin, OUTPUT);
   pinMode(bluePin, OUTPUT);
```

```
void loop() {
  while (Serial.available() > 0) {
    int red = Serial.parseInt();
    int green = Serial.parseInt();
                                       Adatbevitel
    int blue = Serial.parseInt();
    if (Serial.read() == '\n') {
      red = constrain(red, 0, 255);
      green = constrain(green, 0, 255); Korlátozás
      blue = constrain(blue, 0, 255);
      analogWrite(redPin, red);
      analogWrite(greenPin, green);
                                       Vezérlés
      analogWrite(bluePin, blue);
      Serial.print(red, HEX);
      Serial.print(green, HEX);
                                       Kiírás
      Serial.println(blue, HEX);
```

ESP8266 WiFi modul

Az **ESP-01** modul egyszerű megoldást kínál WiFi kapcsolatok létesítésére. A mikrokontroller irányába soros kommunikációval kapcsolódik (TTL, soros). A könnyű kezelhetőséget a firmware által értelmezett egyszerű AT parancsok biztosítják.

- Tápfeszültség, I/O jelszint: 3.3V,
- Áramfelvétel: min. 300mA.
- CPU: Tensilica Xtensa LX3 32 bit 80 MHz
- SOC: Expressif ESP8266EX
- Frekvencia: 2.4 GHz sáv (802.11 b/g/n),
- Antenna: integrált,
- Adatsebesség: 9600 115200/8/n/1 (konfigurálható),
- Biztonság: WiFi (OPEN / WEP / WPA_PSK / WPA2_PSK / WPA2_PSK)
- Működési mód: Kliens / Access Point / mindkettő
- Kommunikáció: TCP és UDP
- SSL támogatás: nincs
- Egyidejű kapcsolatok száma: max. 5

Egyéb lehetőségek: A mikrovezérlőbe saját program is tölthető, így az AT parancsokkal történő vezérlés helyett alkalmazásprocesszorként is programozható. Elterjedt megoldások:

- **1. Lua interpreter** betöltése és a modul Lua nyelvű programozása (NodeMCU)
- 2. Arduino 1.6 környezet kibővítése ESP8266 támogatással, így közvetlenül is programozható.

8

Link: Az AT parancsok leírása

A kivezetések szerepe

_	 	. •	•
Fe	Ine7	P TI	raiz
		CU	TUJZ

Kivezetés	Funkció
GND	A tápegység közös pontja
ТХ	UART (TTL) kimenet
GPIO 2	szabadon felhasználható I/O kivezetés
CH_PD	A modul működéséhez magas szintre kell húzni
GPIO 0	Ha induláskor LOW, akkor a bootloader indul
RESET	Lehúzásra újraindítja a mikrovezérlőt
RX	UART (TTL) bemenet
VCC	Tápfeszültség (3,3 V)

Teszt kapcsolás

A modult egy 3,3 V kompatibilis **USB-TTL átalakítóval** kapcsolhatjuk össze a PCvel. Sajnos, a konverter nem biztosítja az **ESP-01** áramigényét, ezért az USB busz 5 V-os tápellátásából (ami 0,5 A terhelhetőségű) kell előállítani a 3,3 V-os tápfeszültséget.

Teszt kapcsolás

CP2102 USB-TTL átalakító

A huzalozás felülnézetben 2x4 kivezetéses meghajlított lábú csatlakozó A kész kapcsolás (DHT22-höz előkészítve)

I. Az AT parancsok használata

S COM5		▲ COM5
	Send	Send
[Vendor:www.ai-thinker.com Version:0.9.2.4]	*	AT+CIOBAUD? +CIOBAUD: 9600 Adatátviteli sebesség lekérdezése ^
ready AT+GMR firmware verzió lekérdezése 0018000902-AI03		ok AT+CSYSWDTENABLE Watchdog engedélyezés
ok <u>AT+CWMODE</u> ? üzemmód lekérdezése		AT+CIPMUX=1 Multiplex üzemmód engedélyezés
+CWMODE:1 (1: STA, 2: AP, 3: STA + AP)		ok AT+CIPSERVER=1,25 Telnet szerver indítása
AT+CWLAP Elérhető hálózatok listája +CWLAP: (3, "szabina", -68, "34:00:a3:7a:d7:28", 1) +CWLAP: (4, "PC", -93, "f4:ec:38:ca:15:00", 1)		^{oĸ} Link ←−−−−kapcsolódás
+CWLAP: (1, "CSP-LINK", -55, "00:27:19:d0:c4:c4", 5) +CWLAP: (4, "UPC1663941", -87, "64:7c:34:52:48:7d", 6) +CWLAP: (3, "krizma", -80, "00:22:b0:a5:2f:ce", 6)		+IPD,0,1:H
+CWLAP: (1, "Csilla", -78, "54:e6:fc:dd:f8:16", 6) +CWLAP: (4, "ZsNet", -90, "f8:d1:11:46:4b:cc", 6) +CWLAP: (0, "UPC Wi-Free" -87, "06:7c:34:52:48:7d", 6)		+IPD,0,1:e OK
+CWLAP: (3, "apuci76", -81, "f4:ec:38:d8:f3:08", 9) +CWLAP: (4, "TP-LINK_DOD8C8", -55, "00:27:19:d0:d8:c8", 11) +CWLAP: (4, "Kiss Pista mint Kisgazda", -84, "c0:4a:00:4e:63:80"	≡,11)	+IPD, 0, 1:1 vett karakterek
ok AT+CWJAP="CSP-LINK", "Csatlakozás hálózathoz		+IPD,0,1:1 OK
ok (SSID, passwd)		+IPD,0,1:0 V
192.168.1.199 IP szám lekérdezése		AT+CIPSTATUS Állapot lekérdezése
ok	-	+CIPSTATUS:0, "TCP", "192.168.1.100", 52675, 1 OK kliens TP száma
Autoscroll	9600 baud 🗸	✓ Autoscroll Both NL & CR → 9600 baud →

Hobbielektronika csoport 2014/2015

Debreceni Megtestesülés Plébánia

Windows Telnet kliens indítása

11. Vezérlés Arduino-val

Hobbielektronika csoport 2014/2015

Debreceni Megtestesülés Plébánia

Vezérlés Arduino-val

A 2x4 kivezetéses meghajlított lábú csatlakozó breadboard-képessé teszi az ESP-01 modult...

Adafruit_webclient.ino

Az alábbi program megpróbál a <u>www.adafruit.com</u> webszerveréhez kapcsolódni és letölteni a /testwifi/index.html oldalt. A mintaprogam az Adafruit_ESP8266.h programkönyvtárat használja (Link: <u>github.com/adafruit/Adafruit_ESP8266</u>). Ez a program csak **Arduino környezetben** fordul le!

1. rész: Beállítási paraméterek megadása

```
#include <Adafruit ESP8266.h>
  #include <SoftwareSerial.h>
                                           //connect to ESP-01 TX pin
  #define ESP RX
                   8
  #define ESP TX
                                           //connect to ESP-01 RX pin
                   9
  #define ESP RST 4
                                           //connect to ESP-01 RST pin
  SoftwareSerial softser(ESP RX, ESP TX);
  // Must declare output stream before Adafruit ESP8266 constructor; can be
  // a SoftwareSerial stream, or Serial/Serial1/etc. for UART.
  Adafruit ESP8266 wifi(&softser, &Serial, ESP RST);
  // Must call begin() on the stream(s) before using Adafruit ESP8266 object.
                                           // Your network name here
  #define ESP SSID "SSID"
  #define ESP PASS "password"
                                           // Your network password here
  #define HOST "www.adafruit.com"
                                           // Host to contact
  #define PAGE "/testwifi/index.html" // Web page to request
  #define PORT
                 80
                                           // 80 = HTTP default port
  #define LED PIN 13
                                         Otthoni WiFi hálózat
                                         belépési adatai (név, jelszó)
Hobbielektronika csoport 2014/2015
                                             16
                                                         Debreceni Megtestesülés Plébánia
```

2. rész: a WiFi modul újraindításának és a firmware verziójának ellenőrzése

```
void setup() {
  char buffer[50];
  pinMode(LED PIN, OUTPUT);
  for(uint8 t i=0; i<3; i++) {</pre>
    digitalWrite(13, HIGH); delay(50);
    digitalWrite(13, LOW); delay(100);
  }
  wifi.setBootMarker(F("Version:0.9.2.4]\r\n\r\nready"));
  softser.begin(9600); // Soft serial connection to ESP8266
  Serial.begin(115200); UART serial debug
  if(!wifi.hardReset()) {
    Serial.println(F("no response from module."));
    for(;;);
  }
  if(!wifi.softReset()) {
    Serial.println(F("no response from module."));
    for(;;);
  }
  wifi.println(F("AT+GMR"));
  if(wifi.readLine(buffer, sizeof(buffer))) {
    Serial.println(buffer);
    wifi.find(); // Discard the 'OK' that follows
  } else {
    Serial.println(F("error"));
  }
```

3. rész: Kapcsolódás a hálózatra és a kért oldal letöltése

```
if(wifi.connectToAP(F(ESP SSID), F(ESP PASS))) {
                                                      Kapcsolódás a WiFi-re
 wifi.println(F("AT+CIFSR"));
  if(wifi.readLine(buffer, sizeof(buffer))) {
                                                      IP szám lekérdezése
    Serial.println(buffer);
   wifi.find(); // Discard the 'OK' that follows
    if(wifi.connectTCP(F(HOST), PORT)) {
                                                      Kapcsolódás a szerverhez-
      Serial.print(F("OK\nRequesting page..."));
                                                      Weblap lekérése
      if(wifi.requestURL(F(PAGE))) {
        Serial.println("OK\nSearching for string...");
        if(wifi.find(F("working"), true)) {
                                                      Megtalálta,
          Serial.println(F("found!"));
        } else {
                                                      Vagy nem?
          Serial.println(F("not found."));
        }
      } else { // URL request failed
        Serial.println(F("error"));
      }
      wifi.closeTCP();
                                                      Szerverkapcsolat bontása-
    } else { // TCP connect failed
      Serial.println(F("D'oh!"));
  } else { // IP addr check failed
    Serial.println(F("error"));
                                                      WiFi kapcsolat bontása
 wifi.closeAP();
} else { // WiFi connection failed
  Serial.println(F("FAIL"));
                                } }
```

Adafruit ESP8266 Demo Hard reset... [Vendor:www.ai-thinker.com Version:0.9.2.4] ready' OK. Soft reset...--> AT+RST <--- ' AT+RST OK Checking firmware version...-> AT+GMR <--- '0018000902-AI03' 0018000902-AI03

OK

```
Connecting to WiFi...--> AT+CWMODE=1
<--- 'no change'</pre>
---> AT+CWJAP="CSP-LINK", "xxxxx"
<--- '
OK
.
---> AT+CIPMUX=0
<--- '
OK
.
OK
Checking IP addr...-> AT+CIFSR
<--- '192.168.1.199'
192.168.1.199
OK
I.
```

Connecting to host...->> AT+CIPSTART="TCP", "www.adafruit.com",80 <--- ' OK Linked' OK Requesting page...-> AT+CIPSEND=61 <--- '> ' ---> GET /testwifi/index.html HTTP/1.1 Host: www.adafruit.com <--- 'SEND OK,</pre> Searching for string... +IPD,' 536:HTTP/1.1 200 OK Date: Tue, 28 Apr 2015 15:14:31 GMT Server: Apache Access-Control-Allow-Headers: Origin... Content-Length: 74 Content-Type: text/html This is a test of the CC3000 module! If you can read this, its working' found! ---> AT+CIPCLOSE

```
If you can read this, its working'
found!
---> AT+CIPCLOSE
<---- ' :)
OK
OK
Unlink
'
---> AT+CWQAP
<----,
OK'</pre>
```

III. Arduino – ESP8266 támogatással

Egy **ESP8266** támogatással bővített **Arduino 1.6** fejlesztői környezet található a <u>github.com/esp8266/Arduino</u> címen. Ennek segítségével az **ESP8266EX** mikrovezérlő közvetlenül és kényelmesen (**Arduino/Wiring** nyelven) programozható.

Beállítások:

Telepítés után a kártya kiválasztásához a **Tools/Board** menüben a **"Generic ESP8266 board"** opciót kell választani. A soros port kiválasztása előtt csatlakoztatni kell a kommunikációhoz használt **USB-UART/TTL** átalakítót.

Programletöltés:

- A Tools/Programmer menüben az "esptool" eszközt kell kiválasztani
- Programletöltés előtt a modult bootloader módba kell állítani: az ESP-01 modul GPIO 0 lábát földre kell húzni és így kell resetelni (RST láb lehúzása, vagy tápfeszültség pillanatnyi megszakítása). Ekkor a modul bootloader módba kapcsol.

Kapcsolás:

A kapcsolás lehet ugyanaz, amit az **AT parancsok** kipróbálásánál használtunk, illetve az igényeinknek megfelelően bővíthetjük a kapcsolást. Sajnos, az **ESP-01** modulnál csak a **GPIO 2** láb használható szabadon.

Ledblink.ino

21

Hobbielektronika csoport 2014/2015

Debreceni Megtestesülés Plébánia

ThingSpeak kliens DHT22 szenzorral

Cél: Hőmérséklet és relatív páratartalom mérése DHT22 szenzorral, s az adatok továbbítása az **api.thingspeak.com** szerverre, ahol az adatok automatikusan megjelenítésre kerülnek.

A hozzávalók:

ThingSpeak_DHT22.ino

Használnunk kell a beépített ESP8266WiFi könyvtárat és az Adafruit DHT22 könyvtárat.

1. rész: paraméterek definiálása, objektumok példányosítása

```
#include <ESP8266WiFi.h>
const char* ssid = "your-SSID";
const char* password = "your-passwd";
const char* host = "api.thingspeak.com";
const char* writeAPIkey = "your-API KEY";
#include "DHT.h"
#define DHTPIN 2 //Digital input pin for the sensor
#define DHTCOUNTS 15 //Arduino=5, MSP430=11, ESP8266=15
DHT dht(DHTPIN, DHT22,DHTCOUNTS);
String T = String("20.0"); //Default values
String H = String("25.0");
```

ThingSpeak_DHT22.ino

2. rész: kapcsolódás a hálózatra, IP szám lekérdezése

```
void setup() {
  Serial.begin(115200);
                                    //DHT szenzor inicializálás
 dht.begin();
 delay(100);
  Serial.print("Connecting to ");
  Serial.println(ssid);
 WiFi.begin(ssid, password); //Kapcsolódás a WiFi hálózatra
 while (WiFi.status() != WL CONNECTED) {
   delay(500);
    Serial.print(".");
                                    //Várakozás a kapcsolódásra...
  }
  Serial.println("");
  Serial.println("WiFi connected"); //Kapcsolódás megtörtént
  Serial.println("IP address: ");
  Serial.println(WiFi.localIP()); //IP szám lekérdezése
}
```

3. rész: kapcsolódás a hálózatra, IP szám lekérdezése

```
void loop() {
 delay(5000);
  float h = dht.readHumidity();
 float t = dht.readTemperature();
 // check if returns are valid, if they are NaN (not a number)
 // then something went wrong!
  if (isnan(t) || isnan(h)) {
   Serial.println("Failed to read from DHT");
  }
 else {
   T = String(t);
                  //Convert temperature to String
                  //Convert humidity to String
   H = String(h);
  }
  Serial.print("connecting to ");
  Serial.println(host);
```

Folytatás a következő oldalon...

4. rész: kapcsolódás a szerverhez, adatküldés és a válasz kilistázása

```
// Use WiFiClient class to create TCP connections
 WiFiClient client;
  const int httpPort = 80;
  if (!client.connect(host, httpPort)) {
                                                            TCP kapcsolódás
    Serial.println("connection failed");
   return;
  }
  String url = "/update?key=" + String(writeAPIkey);
 url += "&field1=" + T;
 url += "&field2=" + H;
  Serial.print("Requesting URL: "); Serial.println(url); Adatok kiküldése
  client.print(String("GET ") + url + "\r\n" +
               "Host: " + host + "r\n" +
               "Connection: close\r\n\r\n");
 delay(10);
                                                            Válasz üzenet
 while(client.available()) {
                                                            vétele
    String line = client.readStringUntil('\r');
    Serial.print(line);
  }
  Serial.println();
  Serial.println("closing connection");
}
```

Csatorna definiálása

🖵 ThingSpeak	Channels - Apps Plugins	Account 🗸	Sup	port -
Private View Public V	iew Channel Settings API Keys	Data Import / Export		
Percentage Complete Channel ID Name Description	70% 34244 Pista szoba Experimental channel running in the room of Pista. Hadware: DHT22 sensor + ESP-01 ESP8266 WiFi module.	URL Video ID Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7	YouTube Vimeo Indoor Temperature remove field Humidity [%] remove field add field add field add field add field add field add field add field add field	
Tags Latitude Longitude Elevation Make Public?	Arduino, esp8266, DHT22 47.549036 21.61038 120	Field 8 Want to clear all feed Clear Channel	☐add field Save Channel d data from this channel?	

Hobbielektronika csoport 2014/2015

Debreceni Megtestesülés Plébánia

Az eredmény

https://thingspeak.com/channels/34244

Hobbielektronika csoport 2014/2015

Debreceni Megtestesülés Plébánia

Sign In

SESTAKER

Bolyai

No.

Thomas Mann o

Lehel

ę

Emlékeztető: Arduino nano v3.0

Hobbielektronika csoport 2014/2015

MSP430 Launchpad : Energia Pinout

http://github.com/energia/Energia/wiki/Hardware

