Újrakonfigurálható eszközök

9. Cypress PSOC 5LP prototípus kártya – az első lépések

Felhasznált irodalom és segédanyagok

- Cypress: CY8C58LP FamilyDatasheet
- Cypress: PSOC 5LP Architecture Technical Reference Manual)
- Cypress: CY8CKIT-059 Prototyping Kit Guide
- Cypress: AN77759: Getting Started with PSoC®5LP
- Cypress: PSoC®Creator[™] User Guide
- Yuri Magda: Cypress PSoC 5LP Prototyping Kit Measurement Electronics
- Cserny István: PSOC 5LP Mikrokontrollerek programozása

Cypress PSOC mikrovezérlők

- PSOC = Programozható System-on-chip (CPLD + mikrovezérlő)
 - PSoC 1: M8C (8-bites)
 - ✤ PSoC 3: 8051 (8-bites)
 - PSoC 4: ARM Cortex-M0 (32-bites)
 - PSoC 5LP: ARM Cortex-M3 (32-bites)
 - PSOC 6: ARM Cortex M4F + M0+ + BLE (32 bites)

Fejlesztői környezet:

- PSOC Designer csak PSOC 1-hez
- PSOC Creator PSOC 3, 4, 5, 6-hoz
- A PSOC4 és PSOC5 mikrovezérlők 3,3 V-os és 5 V-os tápfeszültségen is működhetnek!

A számtalan fix funkciós periféria mellett az univerzális digitális blokkokból **egyedi perifériákat,** vagy **kiegészítő logikai áramköröket** is kialakíthatunk.

MCU és PSOC – mi a különbség?

- A hagyományos MCU központi eleme a CPU
- A PSOC esetében a CPU nem központi eleme az adatáramlásnak: a digitális és analóg perifériák és a kivezetések egy jól konfigurálható jel- és adatbusz mátrix hálózaton keresztül kapcsolódnak össze

Hobbielektronika csoport 2017/2018

PSOC 3, PSOC 5LP rendszerszintű vázlat

Hobbielektronika csoport 2017/2018

Tápellátás és tápfeszütségek

Standard tápellátási konfiguráció

- Nincs használatban boost töltéspumpa
- Vdda Vddd >= Vddio0/1/2/3
- Vdda = 1.8 5.5V
- Tápellátási szabályok
- <u>Vdda</u>: Ez legyen a rendszerben a legmagasabb feszültség. Ellátja a magasabb feszültségű analóg domént és a belső stabilizátorokat.
- <u>Vddd</u>: A digitális rendszer belső stabilizátorait táplálja.
- <u>Vcca</u>: Az analóg rész belső stabilizátorának kimenete. Egy külső1.3 uF szűrőkondenzátor kell rá a föld felé.
- <u>Vccd</u>: A digitális rész belső stabilizátorának kimenete. Egy külső1.3 uF szűrőkondenzátor kell rá a föld felé. A két Vccd kimenetet össze kell kötni, s egy közös 1.3 uF szűrőkondenzátoron osztoznak.
- <u>Vddio0/1/2/3</u>: Független I/O tápfeszültségek. Tetszőleges értékűek lehetnek 1.8V és Vdda között.

Hobbielektronika csoport 2017/2018

Univerzális digitális blokkok (UDB)

 Az Univerzális Digitális Blokkokból a CY8C4245 PSOC 4 mikrovezérlők 4 db-ot, a CYC8C5868, illetve CYC8C5888 PSOC 5LP mikrovezérlők 24 db-ot tartalmaznak.

Egy univerzális adatblokk felépítése

Az univerzális adatblokk 2 db 12 bemenetű és 4 makrocella kimenetű szorzat-tag előállító áramkört és egy regiszterekkel, illetve ALU egységgel ellátott "adatút" modult tartalmaz.

Egy 12C4 PLD blokk felépítése

PLD blokk jellemzők:

💠 12 bemenet

- 8 szorzat tag (product term)
- 💠 4 makrocella kimenet

X = (A&B) | (~C&D) Y = (A&B) | (C&D)

- TC = True vagy Complement
- AND = logikai ÉS kapuk
- OR = logika VAGY kapuk
- ✤ MC = makrocella

Х

Egy makrocella felépítése

 A makrocella működhet regiszterként vagy kombinációs logikai áramkörként

Adatút (Data path)

Hobbielektronika csoport 2017/2018

PSOC 5LP fejlesztőeszközök

CY8CKIT-050 PSoC[®] 5LP Development Kit

CY8C5868AXI-LP035 (100 pin TQFP) USB/DMA/12-bit SAR és 20-bit delta-sigma ADC 24 UDB (digitális blokk), 4 analóg blokk

CY8CKIT-059 PSoC[®] 5LP Prototyping Kit CY8C5888LTI-LP097 (68 pin QFN)

USB/DMA/12-bit SAR és 20-bit delta-sigma ADC 24 UDB (digitális blokk), 4 analóg blokk

CY8CKIT-059 fejlesztői kártya

Hobbielektronika csoport 2017/2018

A céláramkör kapcsolási rajza

Hobbielektronika csoport 2017/2018

Fejlesztői szoftver letöltése és telepítése

- Az alábbi szoftverek némelyikének letöltéséhez ingyenes regisztráció szükséges a www.cypress.com webhelyen!
- **PSOC Creator 4.1** (link: www.cypress.com/psoccreator)
- CY8CKIT-059 Kit Only Kit tervezői fájlok, Dokumentáció, mintaprojektek (link: www.cypress.com/cy8ckit-059)
- PSOC 5 Programmer
 (link: www.cypress.com/products/psoc-programming-solutions)
- A fenti szoftverek letöltése és használata ingyenes!

PSOC Creator indítása, Blinky projekt

1. Projekt Felfedező 2. Tervezőablak 3. Könyvtári modulok listája

Hobbielektronika csoport 2017/2018

A Blinky projekt konfigurálása

 A CY8CKIT-059 kártya első mintapéldáját (CE95352 Blinking LED) egy kicsit átszabjuk a PWM_1 modul átkonfigurálásához. Ehhez duplán kattintsunk az alkatrészre!

Configure 'PWM'	Beállításo	ok:
Name: PWM_1 Configure Advanced Built-in	↓ 1. Fixed ft	unction vagy UDB
period #-100-0-#+100-	2. 8-bites	mód
pwm	3. Egy kin	nenet
	4. A perió	dus 100 órajel (1 s)
Implementation: Fixed Function UDB	5. A kitölté	es 2 órajel
Resolution: 8-Bit 16-Bit PWM Mode: One Output	6. Less or	Equal mód
Period: 100 Max Period = 1.01s	7. Holtsáv	nem kell
CMP Value 1:		
CMP Type 1: Less or Equal		
Dead Band: Disabled	Az Advan	ced lapon engedé-
	lyezzük a	Kill funkciót!
Datasheet OK Apply	ancel	

Kivezetések hozzárendelése

A K1 nyomógomhoz (Kill_Switch) a P2[2] kiveztés tartozik

A LED1 kijelzőhöz (PWM Out) a P2[1] kivezetés tartozik

18

A főprogram

- A PSOC eszközök esetén a hardver működtetéséhez a mikrovezérlőnek is futnia kell (órajelek generálása, modulok engedélyezése, stb.), ezért legalább egy minimális méretű main.c programra szükség van.
- A projektbe beillesztett könyvtári alkatrészek/modulok kezelését biztosító API függvényeket a PSOC Creator automatikusan beilleszte a projektbe, ezeket hívhatjuk meg a főprogramból

A Blinky projekt main.c programjának listája

```
#include "project.h"
void main() {
    PWM_1_Start(); // PWM modul indítása
    for (;;) {}
}
```

Fordítás, programletöltés

A projekt generálálás, lefordítás és letöltés lépései: 1) Az alkalmazás generálása (API generálás) A projekt lefordítása (build) Dokumentáció generálás (opcionális lépés) 3) A program letöltése (az áramkör csatlakoztatása után) Blinky - PSoC Creator 4.1 [C:\...\PSoC Creator\KIT-059\Blinky\Blinky.cydsn\TopDesign\TopDesign.cysch] File Edit View Project Build Debug Tools Window <u>H</u>elp - 📮 🔛 - 🔏 🛸 📑 👹 🔆 - 🕑 🔍 _ Build Blinky Shift+F6 💏 🕇 🔤 Debug Workspace Explorer (1 project) Clean Blinky h.cysch Start Page q. ÷÷ Clean and Build Blinky -E 🖾 Workspace 'Blinky' (1 Proje Cancel Build Ctrl+Break E Project Blinky' [CY8C PWM 1 Compile File Ctrl+F6 - K TopDesign cysch PWM 🖻 🧛 Design Wide Resourd Generate Application 🐗 Pins Generate Project Datasheet tc M. Analog Kill Switch 2 kill pwm onents Clocks (+) Interrupts SW 1 양음 DMA Clock 1 Sclock Docum System 00 Hz reset interrupt Directives

Hobbielektronika csoport 2017/2018

A Blinky program futtatása

Hobbielektronika csoport 2017/2018

Új projekt létrehozása lépésről-lépésre

- A következőkben egy új PSOC Creator projekt létrehozásának menetét mutatjuk be, lépésről-lépésre
- Az új projektünkben a PSOC 5LP mikrovezérlő UART porton kommunikál a PC-vel, s egy terminálablakból küldött parancsokkal állathatjuk be a LED1 fényerejét
- Az UART kommunikáció a kártyánkra épített KitProg eszköz segítségével történik, mivel az USB-UART átalakítóként is működik
- A LED1 teljesítményét egy PWM modul segítségével szabályozzuk, s a PWM jel kitöltését szabályozhatjuk 5 – 95 % között
- A projekt forrása Yury Magda könyvének (Cypress PSoC 5LP Prototyping Kit Measurement Electronics) első mintaprojektje

Új munkaterület létrehozása

- A munkaterület (workspace) egy vagy több projektet tartalmazhat
- Új munkaterület létrehozásának lépései a PSOC Creator-ban:
 - ♦ File → New → Project menüpont választás
 - Workspace választás, majd Next gombra kattintás
 - Munkaterület neve (pl. Lab01) és hely megadása, majd Finish

Create Project - Workspace	Create Project - Workspace	? ×
Select project type Choose the type of project – design, library, or workspace.	Create Workspace Choose a name and location for your design.	
Design project: Target kit: Target module: Target device: Library project Workspace 	Workspace: Create new workspace Workspace name: Lab01 Location: C:\Users\csemy\Documents\PSoC Creator\KIT-059	· · · · ·
Next > Cancel	< Back Finish	Cancel

Új projekt létrehozása

- Jobb gombbal kattintsunk a munkaterület nevére a Project Explorer ablakban!
- Válasszuk az Add → New Project menüpontot!

Új projekt létrehozása

- A felbukkanó ablakban válasszuk a Target kit opciót és a CY8CKIT-059 eszközt, majd kattintsunk a Next gombra!
- Válasszuk az Üres (Empty) opciót, majd Next!
- Adjuk meg a projekt nevét (PWM_UART), majd Finish!

Create Project - CY8CKIT-059 (PSoC 5LP)	? 🔀			
Select project type Choose the type of project – design, library, or works	Create Project - CY8CKIT-059 (PSoC 5LP)		?	
Design project:	Select project template Choose a schematic template or start your	Create Project - CY80	CKIT-059 (PSoC 5LP)	? 🗙
Target kit: CY8CKIT-059 (PSoC 5LP) Target module:		Choose a name a	nd location for your design.	
Target device:	Choose from our library of code exam	Workspace:	Add to current workspace	-
 Ubrary project Workspace 	Empty schematic Create a full custom design by adding	Workspace name: Location:	Lab01 C:\Users\csemy\Documents\PSoC Creator\KIT-059\Lab01	
		Project name:	PWM_UART	
(
	< Bac			
			< Back Finish Ca	ancel

A kapcsolás megrajzolása

- A kapcsolás összeállítása a **TopDesign.cysch** lapon történik
- Az alkatrészeket a jobboldali menüből tallózhatjuk és húzhatjuk rá a rajzfelületre
 - ♦ **PWM_1**: Cypress → Digital → Functions → PWM [v3.30]
 - ♦ UART_1: Cypress \rightarrow Communications \rightarrow UART [v2.50]
 - ♦ Clock_1: Cypress \rightarrow System \rightarrow Clock [v2.20]
 - ♦ 0: Cypress \rightarrow Digital \rightarrow Logic \rightarrow Logic Low "0" [v1.0]
 - ♦ **PWM_Out**: Cypress \rightarrow Ports and Pins \rightarrow Digital output pin [v2.20]
- Az összekötésekhez a eszközt használjuk!
- A mikrovezérlőhöz kapcsolódó külső áramköri elemeket az Off-Chip alkatrészkönyvtárból keressük ki! Ezeknek az elemeknek nincs hatása a projektépítésre illetve annak működésére, csupán dokumentációs célokat szolgál a tervrajz ilyen kiegészítése.

Az áramköri terv

Hobbielektronika csoport 2017/2018

PWM_1 konfigurálása

- Duplakattintással nyithatjuk meg a kiválasztott alkatrész konfigurációs felületét
- PWM_1: UDB, 16-bit mód, periódus=255, kitöltés=127, polaritás: Less or Equal, nincs holtsáv

Configure 'PWM'		? 💌
Name: PWM_1		
Configure Advan	iced Built-in	4 ۵
period +255	0++-255	0→
Implementation: 🔘	Fixed Function	
Resolution: 🔘	8-Bit () 16-Bit	
PWM Mode: On	e Output 👻	
Period: 255	Max Period = 2.56ms	
CMP Value 1: 127	7	
CMP Type 1: Les	ss or Equal 🔻	
Dead Band: Dis	abled 2	
Datasheet	ОК Арріу С	ancel

UART modul konfigurálása

- Az UART_1 modullal full duplex kommunikációt valósítunk meg a KitProg-on keresztül ami USB-UART átalakítóként is szolgál
- Megzsakítást nem használunk, a sebesség 9600 bps, a formátum pedig 8 bit, 1 stop bit, no parity, és nincs adatfolyam-vezérlés

	Configure 'UART'	×
Configure 'UART'	Name: UART 1	
Name: UART_1	Configure Advanced Built-in 4	Þ
Configure Advanced Built-in 4 D	Clock selection Internal clock External clock 	
Mode	Interrupt sources	
Full UART (TX + RX) RX only	RX - On Byte Received TX - On TX Complete	
Half duplex TX only	RX - On Parity Error TX - On FIFO Empty	
Dis annual logon	RX - On Stop Error TX - On FIFO Full	
Bits per second:	RX - On Break TX - On FIFO Not Full	=
Data bits: 8	RX - On Overrun Error	
	RX -On Address Match	
Parity type: None	RX - On Address Detect	
API control enabled	RX address configuration Buffers size	
Stop bite:	Address mode: None RX buffer size (bytes): 4	
	Address #1: 0	
Flow control: None	Address #2: 0 TX buffer size (bytes): 4	
	Internal TX interrupt ISR is disabled	-
Datasheet OK Apply Cancel	Datasheet OK Apply Cancel	

Hobbielektronika csoport 2017/2018

CLOCK_1 konfigurálása

- A rendszer órajeleiből leosztással további órajeleket képezhetünk
- A PWM_1 modulhoz 100 kHz-es órajelet configurálunk
- Azt UART_1 órajele automatikusan generálódik az adatsebesség megadásakor

Basic	Advanced Built-in 4
Clock type:	New Existing
Source:	ILO (100 kHz)
Specify:	Frequency: 100 kHz
	Divider:
Summary API Gene Uses Cloc	rated: Yes k Tree Resource: Yes
	OK Apply Cancel

Name	Domain	Source	Desired Freq	Nominal Freq	Accuracy (%)	Start at Reset	Enabled
Clock_1	DIGITAL	ILO	100 kHz	100 kHz	-55,+100	True	True
UART_1 IntClock	DIGITAL	MASTER_CLK	76.8 kHz	76.677 kHz	±1	True	True

A PWM_Out kivezetés konfigurálása

- A PWM-Out kimenettel LED1-et akarjuk meghajtani, ezért "erős meghajtóként" (Strong drive) konfiguráljuk
- A földre kötött LED1-et így legfeljebb 4 mA-rel táplálhatjuk

Configure 'cy_pins'			? 🔀
Name: PWM_Out			
Pins Mapping Reset Built-	in		4 ۵
Number of pins: 1 $ imes$ $\lim_{n \to \infty} +$	+		
[All pins] [All pins] 	General Input Type Analog Digital input HW connection Digital output HW connection Output enable Bidirectional External terminal	Output Drive mode Strong drive	Initial drive state: Low (0) Min. supply voltage: Hot swap
Datasheet		OK Apply	Cancel

A kivezetések hozzárendelése

 Mivel a külső áramkör kialakítása már adott számunkra, nekünk kell megadni, hogy mi melyik lábon legyen kivezetve

Az órajelek konfigurálása

A "Design Wide Resources" Clock lapján a rendszer órajeleket konfigurálhatjuk (Edit Clock...-ra kattintva). Itt most ILO állítha elő a 100 kHz-es órajelet. A CPU 24 MHz-en fut.

Hobbielektronika csoport 2017/2018

A main.c program

```
#include <project.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
uint8 rxState; char buf[32]; char *pbuf = buf; int cmp;
int main() {
 CyGlobalIntEnable; // Megszakítások engedélyezése
 UART_1_Start(); // UART_1 egység indítása
 PWM_1_Start();
                            // PWM_1 egység indítása
 for(;;) {
   pbuf = buf:
    UART_1_PutString("Enter duty cycle (5 - 95, max. 2 digits): ");
   UART_1_PutCRLF(0xD):
    UART_1_ClearRxBuffer();
   memset(buf, 0, strlen(buf));
   while (1) {
     if((rxState = UART_1_ReadRxStatus()) == UART_1_RX_STS_FIF0_NOTEMPTY) {
        *pbuf = UART_1_GetChar();
        if((isdigit((uint8)*pbuf) == 0) || (*pbuf == '\n')) {
         UART_1_ClearRxBuffer(); break; }
       UART_1_PutChar(*pbuf); UART_1_ClearRxBuffer(); pbuf++; }
    }
    UART_1_PutCRLF(0xD):
    CyDelay(500); cmp = atoi(buf);
    if ((cmp >= 5) && (cmp <= 95))
     PWM_1_WriteCompare((int)(cmp*2.56));
  }
}
```

Forrás: Yuri Magda: Cypress PSoC 5LP Prototyping Kit Measurement Electronics

Hobbielektronika csoport 2017/2018

A projekt lefordítása és futtatása

- A projektépítés munkamenete megegyezik a korábban leírtakkal (Build → Generate Application, Build → Build PWM_UART)
- A futtatáshoz használhatjuk pl. a Termite programot, 9600 bps-re konfigurálva. A beírt számok 5 és 95 közöttiek lehetnek!

