Vegyes témakörök

ARDUINO – a kispénzű amatőrök PLC-je

Az előadás tartalma

- PLC vagy mikrovezérlő?
- Egyszerű PLC helyettesítő Arduinoval
- A be- és kimenetek védelme optocsatolóval
- A PLC Ladder Simulator alkalmazás (Android)
- Egyszerű mintaprojektek szimulációja
- Egyszerű mintaprojekt hardver megvalósítása és betöltése
- Az LDmicro létra-logikai fordító program és szimulátor
- Idtut.ld Egyszerű PIC projekt
- cdemo.ld Egyszerű Arduino projekt

PLC vagy mikrovezérlő?

- Minden PLC-ben található mikrovezérlő, vagy mikroprocesszor, de a PLC több/más, mint egy mikrovezérlő.
- A központi egység egy speciális firmware-t tartalmazó mikrovezérlő, melynek részleteit csak a gyártó ismeri.
- A felhasználó saját felhasználói kóddal egészíti ki a PLC-t.
- A ki és bemenetek ipari környezethez illesztettek.
- Szükség esetén a digitál I/O-n kívül számos más periféria is csatlakozik a PLC központi egységéhez (pl. kommunikációs modulok).
- Mindezeket a legegyszerűbb esetekben megpróbálhatjuk egy mikrovezérlővel és ipari környezethez illeszkedő ki/bemenetekkel helyettesíteni úgy, hogy közben a PLC-nél megszokott szoftverfejlesztési módszereket használjuk (pl. létra diagram).

Egyszerű PLC Arduinoval

 A legegyszerűbb PLC-k a központi feldolgozó egységen kívül csak digitális ki- és bemeneteket tartalmaznak. Ez könnyen kiszolgálható akár egy Arduinoval is.

DC 5-24V Pro mini PLC Board (Aliexpress)

A bemenetek védelme optocsatolóval

Közös anódú bekötés

Hobbielektronika csoport 2017/2018

A kimenetek védelme optocsatolóval

Az Arduinoval vagy más mikrovezérlővel vezérelhető relé modulok optocsatolós leválasztást is tartalmaznak, így a visszahatás kapcsoláskor minimalizálható.

PLC Ladder Simulator

- Ez az alkalmazás Androidon fut, egyszerű létradiagramok szerkesztésére és szimulációjára alkalmas.
- A fizetős változat segítségével Arduino kártyára is letölthetjük a kész, kipróbált programot (USB OTG csatlakozással, vagy egy letölthető PC alkalmazás segítségével).
- Az alkalmazás honlapja: plcladdersimulator.weebly.com/
- Letöltés: Google Play Áruház PLC Ladder Simulator

Az alábbi egyszerű példa egy öntartó relé.

Az öntartás megvalósításához egy virtuális változót (M1) is létre kellett hozni.

Arduino Nano mint PLC

Az Arduino Nano kártya jellemzői a PLC Ladder Simulator v1.32 applikációval:

- 8 bemenet / 8 kimenet
- 32 virtuális változó
- 16 INT/16 DINT/8 REAL változó
- 4 számláló
- 4 időzítő
- A felhasználói programot az EEPROM memóriában tárolja
- Firmware: firmware_nano_v1.1.ino
 (előző változat: firmware_nano_v1.02.ino)

Új Arduino projekt létrehozása

- Indítsd el az alkalmazást és a (:) főmenüben kattints a New Project-re!
- Válaszd az Arduino módot!
- Válaszd ki a megfelelő kártyát!
- A főmenüben indítsd a Ladder Editort!
- A + gombra kattintva adhatunk hozzá új elemeket:
 - Záró kontaktus (N.O.)
 - Nyitó kontaktus (N.C.)
 - Tekercs (Coil)
 - Al-létrafok (Sub-rung)
 - Létrafok: tekercs, számláló, időzítő (Rung)
- Mentsd el a tervet!

A v1.32 változat sok további lehetőséget kínál, például analóg, illetve élérzékeny bemeneteket

Hobbielektronika csoport 2017/2018

A projekt letöltése

- Töltsük rá az Arduino kártyára a firmware-t az Arduino IDE segítségével! (link: firmware_nano_v1.1.ino)
- Csatlakoztassuk OTG kábellel az Arduino kártyát a mobilhoz!
- Indítsuk el a PLC Ladder Simulator alkalmazást és töltük be az előzőleg elmentett projektet!
- Kattintsunk az USB gombra!
- Indítsuk újra az Arduino kártyát (RESET gomb) és a D13 LED folyamatos villogása során (kb. 8 s ideig tart a programozó mód) kattintsunk az alkalmazásban a letöltés gombra! (1)
- A programbetöltés, vagy a programozói módból időtúllépéssel történő kilépés után az Arduino "végrehajtás" módba lép. A D13 LED ilyenkor folyamatosan ég.

A SIMPLE projekt hardver megvalósítása

Lapzárta után érkezett...

- A PLC Ladder Simulator alkalmazás legfrissebb, v1.32 változata számos új lehetőséget kínál: analóg be- és kimenetek, INT, DINT és REAL változók, összehasonlítás, matematikai/logikai műveletek és függvények, élfigyelés (fel- és lefutás).
- A kezelőfelület numerikus megjelenítést és analóg beállítást is lehetővé tesz.

Hobbielektronika csoport 2017/2018

LDmicro: létra-logika PIC/AVR-hez

- A PLC-kben valószínűleg interpreter vagy virtuális gép értelmezi a felhasználó által írt kódot.
- Jonathan Westhues LDmicro programja viszont egy fordító, amely natív kódot generál PIC16 vagy AVR mikrovezérlők számára. Ez lehetővé teszi, hogy olcsó, kis erőforrású mikrovezérlőket használhassunk.
- A program szponzori verziója több mikrovezérlő típust és az Arduino-t is támogatja (fejlesztés alatt).
- A fordító C nyelvre is képes fordítani, ez esetben szinte bármelyik mikrovezérlőre átvihetjük a kódot, de a futtatói környezetet és az I/O függvényeket nekünk kell megírnunk.
- Szimulációs módban a modellt folyamatosan vagy lépésenként futtathatjuk.
- Honlap: http://cq.cx/ladder.pl

Hobbielektronika csoport 2017/2018

ldtest.ld – LED és nyomógomb

LDmicro0.1 MICRO=Microchip PIC16F876 28-PDIP or 28-SOIC CYCLE=10000 CRYSTAL=20000000 BAUD=2400

IO LIST Xbutton at 14 Yled at 15 END

PROGRAM RUNG CONTACTS Rosc 0 TON Tosc_on 250000 TOF Tosc off 250000 COTI ROSC 1 0 0 **END** RUNG CONTACTS Xbutton 0 CTC Cstate 2 **END** RUNG PARALLEL EOU Cstate 1 SERIES EOU Cstate 2 CONTACTS Rosc 0 **END** END COTI Yled 0 0 0 **END**

H LDmicro - Simulation (Stopped) - C:\plc\LDmicro\ldtut.ld File Edit Settings Instruction Simulate Compile Config Help 0001 41 Xbutton Cstate -----] [------[CTC 0:2]----0002 28 Y]ed [Cstate ==] 1]-----0003 ΔI [Cstate ==] Rosc | [2]------] [-----+ 3 ----- [END]-----129 Pin on M... MCU P... Name State Type $0 \times 0000 = 0$ Cstate counter Xbutton digital in 0 14 RC3 digital out Yled 15 RC4 0 Rosc 1 int. relay Tosc on turn-on delay $0 \times 0001 = 1 = 10 \text{ ms}$ Tosc off turn-off delay 0x0019 = 25 = 250 ms 111 Þ modified Microchip PIC16F876 28-PDIP or 28-SOIC processor clock 20 MHz Tcycle

Rosc - "belső" relé

Forrás: An LDmicro Tutorial - cq.cx/ladder-tutorial.pl

Hobbielektronika csoport 2017/2018

Egy lehetséges hardver megvalósítás

- PIC16F876P
- 20 MHz rezonátor (5 MIPS)
- SW1 az RC3 bemeneten
- LED az RC4 kimeneten

- Induláskor a LED nem világít
- SW1 lenyomására a LED bekapcsol
- SW1 újabb lenyomására a LED villog
- SW1 újabb lenyomására a kezdőállapotba jutunk vissza

Forrás: An LDmicro Tutorial - cq.cx/ladder-tutorial.pl

Hobbielektronika csoport 2017/2018

Szöveggé konvertált létradiagram

A File > Export As Text menüpontot választva szövegfájlban kapjuk meg a létradiagramot.

Hobbielektronika csoport 2017/2018

LDmicro és Arduino

- 1. lehetőség: támogatás fejében megkapható a legfrissebb fejlesztői változat, amely képes Arduino kódra fordítani.
- 2. lehetőség: beküldhetjük az .ld állományt az LDmicro.GitHub@gmail.com címre és válaszul kapunk 4 db generált állományt, mint Arduino projektet.

Figyelem! A sikeres fordításhoz az Arduino IDE valamelyik újabb (pl. 1.6.x) változatára lesz szükség!

- Például a c_demo.ld terv esetében az alábbi állományokat kapjuk:
 - c_demo.ino_ a főprogram sablon, amelyet igény esetén bővíthetünk
 - c_demo.cpp a létradiagram implementációja ezt ne módosítsuk!
 - c_demo.h a definíciókat tartalmazó fejléc állomány ezt ne módosítsuk
 - Iadder.h_ rendszerszintű definíciók sablonja. Ebben adjuk meg az I/O kivezetés hozzárendeléseket,

Részletes leírás: https://github.com/LDmicro/LDmicro/wiki/HOW-TO...

Hobbielektronika csoport 2017/2018

c_demo.ino

```
#include "c_demo.h"
```

```
void setup() {
   // put your setup code here, to run once:
   setupPlc();
}
void loop() {
   // put your main code here, to run repeatedly:
   loopPlc();
```

}

A "főprogram" csupán a **c_demo.cpp**-ben definiált **setupPlc()** inicializáló függvényt hívja meg, majd az ugyanott definiált **loopPlc()** függvényt hívogatja ciklikusan.