Arduino tanfolyam kezdőknek és haladóknak

11. Ultrahangos távolságmérés, OLED kijelzők

Hobbielektronika csoport 2019/2020

1

Ajánlott irodalom

- □ Aduino LLC.: <u>Arduino Language Reference</u>
- ATMEL: <u>ATmega328p mikrovezérlő adatlapja</u>
- Brian W. Kernighan, Dennis Ritchie: <u>A C programozási nyelv</u>
- Cseh Róbert: Arduino programozási kézikönyv
- Harsányi Réka Juhász Márton András:

Fizikai számítástechnika: elektronikai alapok és Arduino programozás

- Ruzsinszki Gábor: Mikrovezérlős rendszerfejlesztés C/C++ nyelven I. PIC mikrovezérlők
- Ruzsinszki Gábor: Mikrovezérlős rendszerfejlesztés C/C++ nyelven II. Arduino

Arduino19_11 projektek

- **Sonar** Ultrahangos távolságmérés
- oled_text_demo egyszerű szövegkiírás OLED kijelzőn
- oled_setfont szöveg kiírása többféle font használatával
- oled_basic_drawing a rajzelemek használata

Ultrahangos távolságmérő

A **HC-SR04** modul piezo jeladója az indító impulzus hatására egy 40 kHz-es jelcsomagot sugároz ki. A modul digitális kimenő impulzusának szélessége megegyezik a visszaverődött hang terjedési idejével. Valójában ez tehát részben digitális, részben analóg szenzornak tekinthető...

Főbb paraméterek

- Tápfeszültség: 4.5 V 5.5 V
- Mérési tartomány: 2 cm 4 m (gyakorlatban inkább 2 m)
- Érzékelési szögtartomány: ~ 16 °

Az ultrahangos távolságmérés elve

- Ha az ultrahang impulzus útjában egy tárgy található, akkor a hullámok egy része visszaverődik. Ez a visszhangot a vevő észlelheti
- Az adás és a vétel között eltelt *t* időből és a hang *v* terjedési sebességéből kiszámítható a szenzor és a tárgy között *d* távolság: $d = t \cdot v / 2 \quad \text{ahol } v \text{ esetünkben kb. 340 m/s}$

Ultrahangos távolságmérő

4.000	🝯 СОМЗ	
		Send
	-1.00 cm	A
1 5 1 5 20 20 20	2.70 cm	
	2.51 cm	
	2.18 cm	
	2.44 cm	
	9.62 cm	
	9.59 cm	
	18.69 cm	
	22.99 cm	
	70.76 cm	
	80.93 cm	
	36.07 cm	
	70.38 cm	=
Made with Fritzing.org	70.00 cm	
Lábkiosztás	66.63 cm	
	67.73 cm	· · · · · · · · · · · · · · · · · · ·
Trigger: D7	Autoscroll	No line ending 👻 9600 baud 👻
Echo: D8		

unsigned long **pulseInt**(int *pin,* int *value*)

Meghatározza a beérkező impulzus szélességét (mikroszekundum egységekben). **pin** – a vizsgált bemenet sorszáma **value** – az vizsgálandó impulzus polaritása (HIGH vagy LOW)

Hobbielektronika csoport 2019/2020

Sonar.ino – 1/2. oldal

<pre>#define echoPin 8 #define trigPin 7 #define RED_LED 13</pre>	<pre>// Echo bemenet // Trigger kimenet Hardverfüggő rész</pre>		
<pre>int maximumRange = 400; int minimumRange = 1;</pre>	<pre>// Legnagyobb távolság cm-ben // Minimális távolság cm-ben</pre>		
<pre>long duration; float distance;</pre>	// Időtartam [us] // Távolság [cm]void		
<pre>void setup() {</pre>			
<pre>Serial.begin(9600);</pre>	//Soros kapcsolat 9600 bit/s		
Serial.println("Sonar program");			
<pre>pinMode(echoPin, INPUT);</pre>	//Impulzus bemenet		
<pre>pinMode(trigPin, OUTPUT);</pre>	//Vezérlő kimenet		
<pre>digitalWrite(trigPin, LOW); pinMode(RED_LED,OUTPUT); digitalWrite(RED_LED,HIGH);</pre>	//Alaphelyzetben alacsony szint //A beépített piros LED jelző funkciót lát el		
}			

Sonar.ino – 2/2. oldal

Ahol *d* a távolság, *t* az impulzus hossza, *v* a hang terjedési sebessége (~340 m/s). Mivel *t* értéke μs-ban adott, d-t pedig cm-ben mérjük, így d = t * 34000/2000000, azaz **d = t/58.82**

d = -

OLED I2C kijelző SSD1306 vezérlővel

Jellemzők:

- OLED technológia
- 128x64 képpont
- 0,96" (2,4 cm) képátló
- I2C illesztő
- 2.5V-5.5V tápfeszültség
- SSD1306 vezérlő

- Monokróm (egyes változatoknál a felső harmad más színű)
- Grafikus megjelenítés
- Inverz mód
- Görgetés több irányba
- Dokumentáció: Solomon Systech SSD1306 adatlap

SSD1306 programkönyvtárak

- A kijelző elvileg saját programmal is vezérelhető az adatlap alapján, de kényelmesebb a meglevő programkönyvtárak közül választani
- Adafruit_SSD1306: C++ nyelven írt osztály, amely az Adafruit_GFX és a Print osztályok leszármazottja, azok metódusait is örökli. Az Adafruit_GFX könyvtárat is telepíteni kell! forrás: github.com/adafruit/Adafruit_SSD1306 és github.com/adafruit/Adafruit-GFX-Library
- U8g2: a korábbi U8g programkönyvtár továbbfejlesztett kiadása. Sokféle kijelzőhöz használható (pl. SH1106 1.3" OLED-hez is), de a fentinél bonyolultabb és terjedelmesebb Forrás: github.com/olikraus/U8g2_Arduino
- OLED_I2C: egyszerű, SSD1306 I2C kijezőre optimalizált könyvtár Forrás: <u>www.rinkydinkelectronics.com/library.php?id=79</u>

Mi most csak az Adafruit_GFX + Adafruit_SSD1306 könyvtárakkal foglalkozunk!

Hobbielektronika csoport 2019/2020

A szükséges programkönyvtárak telepítése

- Nyissuk meg a Tools menüben a Manage Libraries menüpontot!
- Keressük meg és telepítsük az Adafruit GFX könyvtárat!

A keresősávba
 GFX helyett
 ssd1306-ot írva
 keressük meg és
 telepítsük az
 Adafruit ssd1306
 könyvtárat is!

-	Sellar Plotter	Cut+Shilt+E	
🥺 Library Manager		×	
Type All 🔹 Topic All	▼ GFX		
Adafruit DotStarMatrix by Adafruit Adafruit_GFX-compatible library for More info)otStar grids Adafruit_GFX-compatible library for D)otStar grids	
Adafruit GFX Library by Adafruit Ver Adafruit GFX graphics core library, the addition to the display library for your More info Select version Install	ion 1.7.5 INSTALLED is is the 'core' class that all our other graphics libra hardware.	aries derive from. Install this library in	
Adafruit ImageReader Library by Adafruit Companion library for Adafruit_GFX and Adafruit_EPD to load images from SD card. Install this library in addition to Adafruit_GFX and the display library for your hardware (e.g. Adafruit_ILI9341), plus the Adafruit_SPIFlash library and SdFat. More info			
Adafruit NeoMatrix by Adafruit Adafruit_GFX-compatible library for More info	leoPixel grids Adafruit_GFX-compatible library for b	NeoPixel grids	
		Close	

SSD1306 használata Arduinoval

- Egy kitűnő bevezető tananyag található a Last Minute Engineers honlapján <u>Interface OLED Graphic Display Module with Arduino</u> ebből merítünk mi is. A tananyag az Adafruit_SSD1306 könyvtárat használja
- A 128x64 képpontos kijelző 8 lapra van felosztva, amelyekben egy oszlop 8 képpontból áll, amelyeket egy bájt bitjei vezérelnek
- Minden lap 128 oszlopból áll, azaz 128 bájttal írható felül
- A teljes képet (1024 bájt) a memóriában kell összeállítani és innen kell frissíteni a kijelzőt

Hobbielektronika csoport 2019/2020

Az SSD1306+GFX könyvtár főbb metódusai

- clearDisplay() töröl minden képpontot a bufferben
- drawPixel(x,y, color) az x,y koordinátájú pixel beállítása
- setTextColor(c[, bg]) szöveg- és háttérszín megadása (0 vagy 1)
- setTextSize(n) szövegméret megadása (n = 1 8)
- setCursor(x,y) kurzor beállítása megadott pontba
- print("message") szöveg kiírása
- print(n,HEX) szám kiírása hexadecimális számrendszerben
- print(n,DEC) szám kiírása tízes számrendszerben
- display() képernyő frissítése (buffer kiírása)

Az SSD1306 osztály példányosítása

Az Adafruit_SSD1306 könyvtárat folyamatosan fejlesztik, ügyelve rá, hogy a régi programokkal kompatibilis maradjon, ezért többféle módon történhet a példányosítás:

Példányosítás régi módon

#include <Wire.h>
#include <Adafruit_SSD1306.h>
#include <Adafruit_GFX.h>
#define OLED_ADDR 0x3C

```
Adafruit_SSD1306 display(-1);
```

Új típusú példányosítás

```
#include <Wire.h>
#include <Adafruit_SSD1306.h>
#include <Adafruit_GFX.h>
#define OLED_ADDR 0x3C
```

```
#define SCREEN_WIDTH 128
#define SCREEN_HEIGHT 64
#define OLED_RESET -1
Adafruit_SSD1306 display(SCREEN_WIDTH,
SCREEN_HEIGHT, &Wire, OLED_RESET);
```

}

oled_text_demo.ino

- A <u>Last Minute Engineers</u> honlapján található tananyagból vett mintaprogram segítségével mutatjuk be a kijelző használatát.
- Egyszerű szövegkiírás: Hello world! (az előző oldali példányosítás után folytatjuk a programot)


```
display.clearDisplay();
display.setTextSize(1);
display.setTextColor(WHITE);
display.setCursor(0,28);
display.println("Hello world!");
display.display();
delay(2000);
```

```
display.clearDisplay();
display.setTextColor(BLACK, WHITE); //INVERTED
display.setCursor(0,28);
display.println("Hello world!");
display.display();
delay(2000);
```

oled_text_demo.ino

Szövegméret változtatása – a setTextSize(n) függvénnyel megnagyobbíthatjuk a pixeleket, ezzel megnő a betűk mérete is

display.clearDisplay(); display.setTextColor(WHITE); display.setCursor(0,24); display.setTextSize(2); display.println("Hello!"); display.display(); delay(2000);

Az alap font 7x10 pont **setTextSize(2)** után 14x20 képpont méretű lesz a fontméret

ASCII szimbólumok kiíratása – a print/println hívásával szöveget, számot írhatunk ki, a write() metódussal pedig karakterkódot adhatunk meg, például write(3) egy szív karaktert ír ki

display.clearDisplay(); display.setCursor(0,24); display.setTextSize(2); display.write(3); // Szívecske rajzolás display.display(); delay(2000);

oled_text_demo.ino

 Számok kiírása – a print() metódussal nemcsak szöveget, hanem számokat is kiírathatunk (32 bites előjelt nélküli számokat adhatunk meg)

// Display Numbers
display.clearDisplay();
display.setTextSize(1);
display.setCursor(0,28);
display.println(123456789); //Szám kiírása
display.display();
delay(2000);

Számrendszer megadása – a P**rint** osztály örökölt tulajdonságai miatt azt is megadhatjuk, hogy milyen számrendszerben írjuk ki a számot


```
display.clearDisplay();
display.setCursor(0,28);
display.print("0x"); display.print(0xFF, HEX);
display.print("(HEX) = ");
display.print(0xFF, DEC);
display.println("(DEC)");
display.display();
delay(2000);
```

További fontok használata

- A "beépített" 7x10 képpont méretű fonton kívül a GFX könyvtárral együtt települő további fontokat is használhatjuk:
 - Három fontcsalád (Serif, Sans, Mono)
 - hégyféle méret (9, 12, 18 és 24 pont)
 - hégyféle variáns (normál, italic/oblique, bold, bold italic/oblique)
- A használathoz be kell csatolni a használni kívánt fontok fejléc állományait, például: #include <Wire.h> #include <Adafruit_GFX.h> #include <Adafruit_SSD1306.h> #include "Fonts/FreeSerifBold12pt7b.h"
- Ki kell választani a kívánt fontot, például: display.setFont(&FreeSerifBold12pt7b);

Serif Sans Mono Serif Sans Mono Serif Sans Mono Serif Sans Mono

oled_setfont.ino

```
#include <Wire.h>
#include <Adafruit GFX.h>
#include <Adafruit SSD1306.h>
#include "Fonts/FreeSerifBold12pt7b.h"
                                                           //Font betöltés
#define SCREEN_WIDTH 128 // OLED display width, in pixels
#define SCREEN_HEIGHT 64 // OLED display height, in pixels
Adafruit SSD1306 display(SCREEN WIDTH, SCREEN HEIGHT, &Wire, -1);
void setup() {
  display.begin(SSD1306_SWITCHCAPVCC, 0x3C);
  display.clearDisplay();
  display.setFont(&FreeSerifBold12pt7b); //Font kiválasztása
  display.setTextSize(1);
  display.setTextColor(WHITE);
                                                                   GND VCC SCL SDA
  display.setCursor(15,22);
  display.print("17:56:35");
  display.setFont();
                     //Vissza a beépített fonthoz
                                                              17:56:35
  display.setTextSize(1);
  display.setCursor(5,32);
                                                             Thursday, 2020.02.20
  display.print("Thursday 2020.02.20");
                                                                Temp: 26.2 C
  display.setCursor(20,45);
  display.print("Temp: 26.2 C");
  display.display();
}
void loop() {
}
```

Debreceni Megtestesülés Plébánia

Grafikus elemek: téglalap rajzolása

Üres téglalap rajzolása – a drawRect() függvény öt paramétert kér: a bal felső sarok x,y koordinátái, szélesség, magasság és a tintaszín.

display.clearDisplay(); display.setTextSize(1); display.setTextColor(WHITE); display.setCursor(0,0); display.println("Rectangle"); display.drawRect(0, 15, 60, 40, WHITE); display.display(); delay(2000);

Kitöltött téglalap rajzolása – a **fillRect()** metódussal történik, a paraméterek ugyanazok, mint az üres téglalap rajzolásnál

display.clearDisplay(); display.setTextSize(1); display.setTextColor(WHITE); display.setCursor(0,0); display.println("Rectangle"); display.fillRect(0, 15, 60, 40, WHITE); display.display(); delay(2000);

Grafikus elemek: lekerekített téglalap

Lekerekített téglalap rajzolása – a drawRoundRect() függvény hat paramétert kér, melyből az 5. paraméter a lekerekítés sugara

display.clearDisplay(); display.setTextSize(1); display.setTextColor(WHITE); display.setCursor(0,0); display.println("Round Rectangle"); display.drawRoundRect(0, 15, 60, 40, 8, WHITE); display.display(); delay(2000);

Kitöltött téglalap rajzolása – a **fillRect()** metódussal történik, a paraméterek ugyanazok, mint az üres téglalap rajzolásnál

display.clearDisplay(); display.setTextSize(1); display.setTextColor(WHITE); display.setCursor(0,0); display.println("Filled Round Rectangl"); display.fillRoundRect(0, 15, 60, 40, 8, WHITE); display.display(); delay(2000);

Grafikus elemek: kör rajzolása

Üres kör rajzolása – a drawCircle() függvény négy paramétert kér: a középpont x,y koordinátái, a sugár és a tintaszín.

display.clearDisplay(); display.setTextSize(1); display.setTextColor(WHITE); display.setCursor(0,0); display.println("Circle"); display.drawCircle(20, 35, 20, WHITE); display.display(); delay(2000);

Kitöltött kör rajzolása – a fillCircle() metódussal történik, a paraméterek ugyanazok, mint az üres kör rajzolásnál


```
display.clearDisplay();
display.setTextSize(1);
display.setTextColor(WHITE);
display.setCursor(0,0);
display.println("Filled Circle");
display.fillCircle(20, 35, 20, WHITE);
display.display(); delay(2000);
```

Grafikus elemek: háromszög rajzolása

Üres háromszög rajzolása – a drawTriangle() függvény hét paramétert kér: a három csúcs x,y koordinátái, és a tintaszín.

display.clearDisplay(); display.setTextSize(1); display.setTextColor(WHITE); display.setCursor(0,0); display.println("Triangle"); display.drawTriangle(30,15, 0,60, 60,60, WHITE); display.display(); delay(2000);

Kitöltött háromszög rajzolása – a **fillTriangle()** metódussal történik, a paraméterek ugyanazok, mint az üres háromszög rajzolásnál


```
display.clearDisplay();
display.setTextSize(1);
display.setTextColor(WHITE);
display.setCursor(0,0);
display.println("Filled Triangle");
display.fillTriangle(30,15, 0,60, 60,60, WHITE);
display.display(); delay(2000);
```

Az Arduino nano kártya kivezetései

Hobbielektronika csoport 2019/2020

Ellenállás színkódok

Hobbielektronika csoport 2019/2020

Debreceni Megtestesülés Plébánia