ESP32 mikrovezérlők programozása Arduino környezetben

1. Ismerkedés az ESP32 kártyával és az Arduino környezettel

1

Felhasznált és ajánlott irodalom

- Expressif: <u>ESP32 datasheet</u>
- Rui Santos & Sara Santos: <u>Random nerd tutorials</u>
- Rui Santos & Sara Santos: ESP32 Web Server with Arduino IDE
- Ravi Teja: <u>Getting Started with ESP32</u>
- Ravi Teja: <u>ESP32 Pinout</u>
- Microcontrollerslab: ESP32 ADC with Arduino IDE
- Circuits4you: <u>ESP32 DAC example</u>
- Brian W. Kernighan Dennis M. Ritchie: <u>A C programozási nyelv</u>

Mi az Arduino?

- Az Arduino egy szabad szoftveres, nyílt forráskódú elektronikai fejlesztőplatform, vagy ökoszisztéma az elektronikus eszközök könnyen elsajátítható kezeléséhez
 - Arduino IDE (integrált fejlesztői környezet): Java alapú, keresztplatformos fejlesztői környezet (szerkesztő, fordító, programletöltő stb.)
 - Arduino kártya: eredetileg ATmega mikrovezérlőn alapuló hardver, amely önállóan vagy a számítógéppel összekapcsolva is működhet, de a támogatott kártyák száma rohamosan bővül, és a keretrendszer bővítőcsomagok telepítésével könnyen kiegészíthető
 - Ebben az évben a **DOIT ESP32 Devkit-1** kártyára mutatunk be példaprogramokat
 - Arduino programnyelv és programkönyvtár-gyűjtemény: amely lehetővé teszi, hogy a mikrovezérlő részleteinek pontos ismerete nélkül, egyszerűen írhassunk programot

digitalWrite(LED_BUILTIN, LOW);

delav(1000);

Hobbielektronika csoport 2021/2022

Az Arduino IDE telepítése

- Windows 10 esetén a Microsoft Store-ban is rendelkezésre áll az Arduino IDE
- Más esetben az arduino.cc/en/Main/Software oldalról töltsük le a legfrissebb Arduino kiadást – "JUST download" (én általában a ZIP változatot töltöm le)

Arduino IDE 1.8.15

The open-source Arduino Software (IDE) makes it easy to write code and upload it to the board. This software can be used with any Arduino board.

Refer to the **Getting Started** page for Installation instructions.

A letöltés és telepítés után a kártyához való meghajtó programot is telepíteni kell: a soros illesztő IC típusától függően vagy a Silicon Labs CP2102 meghajtóprogramját, vagy a WCH honlapjáról a CH341SER.EXE programot kell letölteni és telepíteni

Az ESP32 hardver támogatás telepítése

- Az Arduino File/Preferences menüpontjára kattintunk
- A felbukkanó lapon az Additional Boards Manager URLs rovatba másoljuk be (vagy a mellete levő ikonra kattintva szerkesszük bele a listába) az alábbi sort:

https://raw.githubusercontent.com/ espressif/arduino-esp32/gh-pages/ package_esp32_index.json

 Ezután a Tools menü Boards
 Manager pontjában a felbukkanó listában választható és telepíthető az esp32 kártyát támogató programcsomag

Az Arduino IDE beállítása

A Tools menüben az ESP32 kártyák közöl válasszuk a DOIT ESP32 DEVKIT V1-et és konfiguráljuk az ábra szerint!

Hobbielektronika csoport 2021/2022

Az ESP32 mikrovezérlő bemutatása

- Az ESP32 az Expressif kétmagos mikrovezérlője, beépített WiFi és Bluetooth/BLE kommunikációs képességgel
- CPU: 2x 32bites Xtensa LX6 mag
- ROM: 448 kB (firmware)
- RAM: 520 kB + 16 kB RTC RAM
- Flash: external QSPI
- 34 GPIO, 18 analog (ADC 12 bit), 10 x touch sensor, 16 x PWM, 2 x 8bit DAC, 3 x SPI, 2 x I2C, 2 x I2S, 3 x UART, IR (Tx/Rx), TWAI, Hall sensor 1 host (SD/eMMC/SDIO), 1 slave (SDIO/SPI), 1024-bit OTP, up to 768-bit for customers, Cryptographic hardware acceleration

Az ESP32 Devkit-1 (DOIT) kártya kivezetései

 A Doit ESP32 Devkit-1 kártya egy ESP WROOM-32 modult (ESP32 + 4MB flash) és az alapkártyán egy CP2102 USB-UART átalakítót, egy 3,3 V-os stabilizátort, egy Reset és egy Boot nyomógombot tartalmaz

ESP32 fejlesztőkártya, 38 kivezetéssel

- Az ESP32 36, vagy 38 kivezetéses kártyák bekötése gyártófüggő, és többnyire szükségtelen kivezetéseket tartalmaznak (mint pl. az SPI, amelyet a flash memória lefoglal)
- Az általam beszerzett kártya bekötése az ábrán látható, hasznos többletnek csak a
 GPIO0 kivezetése mondható, a 30
 kivezetéses
 kártyához képest

Az eredeti ábra (amelyet módosítottunk) forrása: randomnerdtutorials.com/getting-started-with-esp32/

* Pins SCK/CLK, SDO/SD0, SDI/SD1, SHD/SD2, SWP/SD3, namely, GPIO6 to GPIO11 are connected to the integrated SPI flash integrated on ESP-WROOM-32 and are not recommended for other uses.

RTC GPIO3

RTC GPIO9

RTC GPIO8

RTC GPIO6

RTC GPIO7

RTC GPI017

HSPI CLK

HSPI MISO

HSPI MOSI

RTC GPI016

RTC GPIO15

Digitális I/O

pinMode(pin, mode) - beállítja a megnevezett kivezetés üzemmódját
 pin – a kiválasztott GPIO kivezetés sorszáma (0 – 39, de nem mindegyik elérhető)
 mode – üzemmód: INPUT, INPUT_PULLUP, INPUT_PULLDOWN, vagy OUTPUT
 az INPUT_PULLUP belső felhúzást, az INPUT_PULLDOWN belső lehúzást jelent

Ezt a függvényt többnyire a program **setup()** szekciójában használjuk, a kezdeti beállításoknál

- digitalRead(*pin*) beolvassa a megadott sorszámú kivezetésen a pillanatnyi jelszintet pin – a kiválasztott GPIO kivezetés sorszáma a visszatérési érték a pillanatnyi jelszint, ami 0 (alacsony), vagy 1 (magas) értékű lehet
- digitalWrite(*pin, level*) beállítja a korábban kimenetnek állított kivezetésen a jelszintet pin – a kiválasztott GPIO kivezetés sorszáma
 level – a kimeneti szint, ami LOW (= 0, alacsony), vagy HIGH (=1, magas) értékű lehet

Digitális I/O

Név	Felirat	Jellemző			
GPIO0	_	Boot nyomógomb, felhúzás			
GPIO1	TX0	Soros port kimenet			
GPIO2	D2	Lehúzás, beépített LED			
GPIO3	RX0	Soros port bemenet			
GPIO4	D4	lehúzás			
GPIO5	D5	felhúzás			
GPIO6	-	Az SPI flash memóriához kötve			
GPIO7	-	Az SPI flash memóriához kötve			
GPIO8	-	Az SPI flash memóriához kötve			
GPIO9	-	Az SPI flash memóriához kötve			
GPIO10	-	Az SPI flash memóriához kötve			
GPIO11	_	Az SPI flash memóriához kötve			
GPIO12	D12	lehúzás			
GPIO13	D13				
GPIO14	D14	Induláskor PWM jelet ad ki			
GPIO15	D15	Felhúzás, induláskor PWM jelet ad			
GPIO16	RX2	UART2 RX			
GPIO17	TX2	UART2 TX			

Az általános célú ki- és bemenetek egyedi sajátosságait az alábbi táblázatokban foglaltuk össze

Boot feltételek indításhoz, (illetve						
letöltéshez)						
PIN	Level					
GPIO0	High (Low)					
GPIO2	Low					
GPIO5	High					
GPIO12	Low					
GPIO15	High					

Név	Felirat	Jellemző
GPIO18	D18	
GPIO19	D19	
GPIO21	D21	I2C SDA
GPIO22	D22	I2C SCL
GPIO23	D23	
GPIO25	D25	
GPIO26	D26	
GPIO27	D27	
GPIO32	D32	
GPIO33	D33	
GPIO34	D34	Nem lehet digitális kimenet
GPIO35	D35	Nem lehet digitális kimenet
GPIO36	VP	Nem lehet digitális kimenet
GPIO39	VN	Nem lehet digitális kimenet

ESP32_ledblink.ino – egyszerű LED villogtatás

- Villogtassuk a GPIO22 kimenetre kötött LED-et! A LED áramát egy soros ellenállással (pl. 220 Ω) korlátozhatjuk
- Ha a LED katódját a GND-re kötjük, az anódját pedig az áramkorlátozó ellenálláson keresztül a GPIO22 kivezetésre, akkor a kimenet magas szintje gyújtja ki a LED-et
- A késleltetéshez a beépített delay() függvényt használjuk, a késleltetés idejét milliszekundumokban kell megadni
- Megjegyzés: GPIO2 használatával a beépített LED villog (lásd: ESP32_ledblink2.ino)

```
void setup() {
   pinMode(22, OUTPUT); // GPI022 legyen digitális kimenet
}
void loop() {
   digitalWrite(22, HIGH); // GPI022 aktív magas
   delay(1000); // egy másodperc késleltetés
   digitalWrite(22, LOW); // GPI022 aktív alacsony
   delay(1000); // egy másodperc késleltetés
}
```


fritzing

ESP32_button2led.ino – nyomógomb állapotának beolvasása

- Feladat: A két LED a kapcsoló állásától függően világítson:
 - Ha a kapcsoló nyitva van, a piros LED világítson!
 - Ha a kapcsoló zárva van, a zöld LED világítson!
- A nyomógomb állapotát a **digitalRead()** függvénnyel vizsgáljuk!

```
#define RED_LED
                  23
#define GREEN_LED 22
#define BUTTON
                  21
void setup() {
  pinMode(RED_LED,OUTPUT);
                           // legyen kimenet
  pinMode(GREEN_LED,OUTPUT); // legyen kimenet
  pinMode(BUTTON,INPUT_PULLUP); // Bemenet belső felhúzással
void loop()
  int state = digitalRead(BUTTON)
  digitalWrite(RED_LED, state); // világít, ha state = HIGH
  digitalWrite(GREEN_LED,!state);// világít, ha state = LOW
                                // pergésmentesítő késleltetés
 delay(20);
```


Analóg jelfeldolgozás

Analóg világban élünk, de digitális mikrovezérlővel dolgozunk...

14

ADC – Analóg-digitális átalakító

Az ADC feladata az, hogy diszkrét kódokká alakítsa a bejövő analóg jelet

 V_{R+} és V_{R-} a

két sarka

referenciaforrás

- A konverzió digitális értéke (N_{ADC}):
 - ♦ Végkitérés: N_{ADC} = 4095, ha a felbontás 12 bites és a bemenő jel ≥ V_{R+} 1.5*LSB
 - ♦ Nulla: $N_{ADC} = 0$, ha a bemenő jel ≤ V_{R-} + 0.5 LSB
 - Közbeeső értékekre:

 $N_{ADC} = 4096 * (V_{IN} - V_{R}) / (V_{R+} - V_{R-})$

A fenti képletből V_{IN}-t kifejezve, ezt kapjuk:

$$V_{IN} = (V_{R+} - V_{R-}) * N_{ADC} / 4096 + V_{R-}$$

V_R általában = 0

Analóg bemenetek

Két ADC van, de nem mindegyik bemenet érhető el, s ADC2 csak a WiFi letiltott állapotában

Hobbielektronika csoport 2021/2022

Az analóg-digitális átalakítót kezelő függvények

- ADC-vel analóg jeleket mérhetünk meg, ami hasznos egy potméterrel leosztott feszültség vagy egy analóg szenzor jele számszerű értékének meghatározására
- analogRead(pin) megméri a megnevezett bemeneten a feszültséget és visszaad egy számot (alapértelmezetten 12 bit a felbontás és kb. 3,3 V a méréshatár)
- analogReadResolution(resolution) beállítja a felbontást (9 –12 bit, default: 12)
- analogSetAttenuation(attenuation) méréshatár beállítása az összes bemenetre vonatkozóan (ADC_0db: 1 V, ADC_2_5db: 1,5 V, ADC_6db: 2 V, ADC_11db: 3,3 V)
- analogSetPinAttenuation(pin, attenuation) a méréshatár beállítása egy adott lábra
- További ADC kezelő függvények (haladóknak): adcAttachPin(pin) – kivezetés kiválasztása és ADC-hez rendelése analogSetClockDiv(attenuation) – ADC órajel leosztás beállítása (1 – 255, default: 1)

```
COM4
             ESP32_check_ADC_linearity
                                                                                  ADC VALUE = 0
• A GPIO34 bemeneten mérjük a potméterrel leosztott feszültséget
                                                                                  ADC VALUE = 62
                                                                                  ADC VALUE = 176
                                                             DSN-DVM-368
const int Analog_channel_pin = 34;
uint32_t ADC_VALUE = 0;
                                                                                  ADC VALUE = 249
char c;
                                                                                  ADC VALUE = 308
                                                                                  ADC VALUE = 385
void setup() {
 Serial.begin(115200);
                                                           1
 analogReadResolution(12);
                          // 12-bit felbontás
 analogSetAttenuation(ADC_11db); // Méréshatár 0-3,3 V
                                                           1
                                                           11
                                                           11
                                                           T
                                                           11
void loop() {
 if (Serial.available()) {
                                                           11
   while (Serial.available()) {
                                                            1 1
                                                           c = Serial.read();
                                                           11
   ADC_VALUE = 0;
                                                            1
   for (int i = 0; i < 1000; i++) {
                                                           11
     ADC_VALUE += analogRead(Analog_channel_pin);
   Serial.print("ADC VALUE = ");
   Serial.println((ADC_VALUE + 500) / 1000);
```

ESP32_check_ADC_linearity

 Az általam kapott mérési adatok alapján a (0,2 – 2,5) V bemeneti tartományban az alábbi közelítő képletet használhatjuk: NADC

 $N_{ADC} = (1239 \cdot U - 80)$

 Megfordítva, az ADC átalakítóból kapott számból a feszültséget így határozhatjuk meg:

 $U = (N_{ADC} + 80)/1239$

Megjegyzés: a fenti képletekben a feszültség V egységben értendő

ESP32_MCP9700.ino – analóg hőmérő használata

ESP32_MCP9700.ino eredmény

Az ábrán a program futási eredménye látható (kézzel melegítettük a hőmérőt)

© COM4		_		×
				Send
ADC VALUE = 790				^
Voltage = 702 mV Temperature = 20.20 °C ADC VALUE = 791				
Voltage = 703 mV Temperature = 20.30 °C ADC VALUE = 800				
Voltage = 710 mV Temperature = 21.00 °C ADC VALUE = 817				
Voltage = 724 mV Temperature = 22.40 °C ADC VALUE = 828				
Voltage = 733 mV Temperature = 23.30 °C ADC VALUE = 834				
Voltage = 738 mV Temperature = 23.80 °C ADC VALUE = 839				
Voltage = 742 mV Temperature = 24.20 °C ADC VALUE = 843				
Voltage = 745 mV Temperature = 24.50 °C ADC VALUE = 840				
Voltage = 743 mV Temperature = 24.30 °C ADC VALUE = 832				~
Autoscroll Show timestamp	Newline 🗸 🗸	115200 baud	Clea	ar output

ESP32_HallSensor.ino – a Hall-szenzor használata

- Hall-effektus: ha egy félvezető lapka hosszú élével párhuzamosan áram folyik, és a lapkára merőleges irányban mágneses teret hozunk létre, akkor a mágneses térre és az áramra merőleges irányban a mintán elektromos feszültség jön létre.
- A beépített Hall-szenzor a VP és VN (GPIO36 és GPIO39) bemeneteket használja, ezeket hagyjuk szabadon!
- HallRead() kiolvassa a szenzor értékét
- Alaphelyzetben 25 körüli értéket kapunk
- Mágnest közelítve, az iránytól függően lefelé vagy felfelé eltérő értéket kapunk (az eredmény negatív szám is lehet!)

Hobbielektronika csoport 2021/2022

ESP32_HallSensor.ino – a Hall-szenzor használata

Az alábbiakban az ESP32_HallSensor.ino példaprogram listája és futási eredménye látható, futás közben a mágnest közelítettük, távolítottuk, illetve az irányát megfordítottuk

DAC – Digitál-analóg átalakító

ESP32_DAC.ino

- dacWrite(*pin, value*) beállítja a megadott DAC kimenet feszültségét *pin* – a DAC kimenethez tartozó kivezetés (DAC1: 25, DAC2: 26) *value* – 0 – 255 közötti szám
- Az alábbi példában 0-tól 255-ig lépkedünk ötösével, s a GPIO25 kimeneten mérjük a feszültséget

```
#define DAC1 25
void setup() {
}
void loop() {
  for (int i = 0; i <= 255; i = i + 5) {
    dacWrite(DAC1, i);
    delay(2000);
  }
}</pre>
```


Debreceni Megtestesülés Plébánia, Borbíró tér 9.

Hobbielektronika csoport 2021/2022