ESP32-C3 mikrovezérlők programozása Arduino IDE környezetben

Felhasznált és ajánlott irodalom

Arduino:

Arduino IDE letöltés: <u>arduino.cc/en/software</u>

***** Espressif:

- Arduino core for the ESP32
- ESP32 Arduino core documentation
- ESP32-C3 Datasheet
- ESP32-C3 Technical Reference Manual

Online tutorials:

- Sidharth Mohan Nair: ESP32-C3 Super Mini Tutorial
- TIAGOTECH: <u>ESP32-C3 Super Mini: Arduino IDE Quick Start Guide</u>
- LinuxHaxor: Unleashing ESP32-C3 with Arduino: A Definitive Guide
- Michiel van der Wulp: ESP32-C3 SuperMini and expansion board

Mi az Arduino?

- Az Arduino egy szabad szoftveres, nyílt forráskódú elektronikai fejlesztőplatform, vagy ökoszisztéma az elektronikus eszközök könnyen elsajátítható kezeléséhez, ami az alábbi összetevőket jelenti:
 - Arduino IDE (integrált fejlesztői környezet): Java alapú, keresztplatformos fejlesztői környezet (szerkesztő, fordító, programletöltő stb.)
 - Arduino kártya: eredetileg ATmega mikrovezérlőn alapuló hardver, amely önállóan vagy a számítógéppel összekapcsolva is működhet, de a támogatott kártyák száma rohamosan bővül, és a keretrendszer bővítőcsomagok telepítésével kiegészíthető Ebben az előadásban az ESP32-C3 Supermini kártyához mutatjuk be példaprogramokat, ehhez az Arduino IDE-t az ESP32 Arduino Core csomaggal bővítjük
- Arduino programnyelv és programkönyvtár-gyűjtemény: amely lehetővé teszi, hogy a mikrovezérlő részleteinek pontos ismerete nélkül, egyszerűen írhassunk programot

void setup() {
 pinMode(LED_BUILTIN, OUTPUT);
}
void loop() {
 digitalWrite(LED_BUILTIN, HIGH);
 delay(1000);
 digitalWrite(LED_BUILTIN, LOW);
 delay(1000);
}

Hobbielektronika 2024/2025

3

Az Arduino IDE telepítése

- Windows 10 esetén a Microsoft Store-ban is rendelkezésre áll az Arduino IDE. Más esetben az <u>arduino.cc/en/software</u> oldalról töltsük le a valamelyik Arduino kiadást –
- A bemutatott programokhoz az Arduino IDE Legacy 1.8.19 verzióját használtuk (általában a ZIP verziót szoktam telepíteni)

Arduino IDE 1.8.19

The open-source Arduino Software (IDE) makes it easy to write code and upload it to the board. This software can be used with any Arduino board.

Refer to the **Arduino IDE 1.x documentation** for installation instructions.

DOWNLOAD OPTIONS

Windows Win 7 and newer Windows ZIP file

Windows app Win 8.1 or 10 Get

Linux 32 bits Linux 64 bits Linux ARM 32 bits Linux ARM 64 bits

 A letöltés és telepítés után előfordulhat, hogy a kártyához való meghajtó programot is telepíteni kell, a soros illesztő típusától függően

4

Az ESP32 hardver támogatás telepítése

- Az Arduino File/Preferences menüpontjára kattintunk
- A felbukkanó lapon az Additional Boards Manager URLs rovatba másoljuk be (vagy a mellete levő ikonra kattintva szerkesszük bele a listába) az alábbi sort:
 - https://raw.githubusercontent.com/ espressif/arduino-esp32/gh-pages/ package_esp32_index.json
- Ezután a Tools menü Boards Manager pontjában a felbukkanó listában választható és telepíthető az esp32 kártyát támogató programcsomag

sketch_aug25b Arduino 1.8.15 (Windows Store 1.8.49.0)	_		×
le Edit Sketch Tools Help			
			P
Preferences	×		
Settings Network			^
Sketchbook location:			
C:\Users\cserny\Documents\Arduino	Browse		
Editor language: Vistem Default (requires restart of Arduino)			
Editor font size: 16			
Interface scale: Automatic 100 + % (requires restart of Arduino)			
Theme: Default theme \checkmark (requires restart of Arduino)			
Show verbose output during: Compilation upload			
Compiler warnings: None V			~
Display line numbers			
Verify code after upload Use external editor			
Check for updates on startup			
Use accessibility features			
Additional Boards Manager URLs: http://arduino.esp8266.com/stable/package_esp8266com_index.json,https://github	.co		
Additional Boards Manager URLs	×	None on	сомз
Enter additional URLs, one for each row			
<pre>http://arduino.esp8266.com/stable/package_esp8266com_index.json https://github.com/stm32duino/BoardManagerFiles/raw/master/STM32/package_stm_index.j https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_ind</pre>	son lex.json v		
Click for a list of unofficial boards support URLs			
ОК	Cancel		

Az ESP32 hardver támogatás telepítése

- A Tools menü Boards Manager pontjában a felbukkanó listában keressük meg az ESP32 kártyát támogató csomagot (a by Expressif System változatot) és kattintsunk az INSTALL gombra!
- E sorok írásakor a 3.1.1 verzió a legfrissebb, ami néhány vonatkozásban különbözik az általunk
 3 évvel korábban használt
 2.x verziótól

Type All ESP32 Arduino ESP32 Boards by Arduino Boards included in this package: Arduino Nano ESP32. More Info esp32 by Espressif Systems version 3.1.1 INSTALLED Boards included in this package: ESP32 Dev Board, ESP32-S2 Dev Board, ESP32-C3 Dev Board, Arduino Nano ESP32. More Info Select version Install	
Arduino ESP32 Boards by Arduino Boards included in this package: Arduino Nano ESP32. More Info esp32 by Espressif Systems version 3.1.1 INSTALLED Boards included in this package: ESP32 Dev Board, ESP32-S3 Dev Board, ESP32-C3 Dev Board, Arduino Nano ESP32. More Info	
esp32 by Espressif Systems version 3.1.1 INSTALLED Boards included in this package: ESP32 Dev Board, ESP32-S2 Dev Board, ESP32-S3 Dev Board, ESP32-C3 Dev Board, Arduino Nano ESP32. More Info	Î
	Remove

Az Arduino IDE beállítása

* A Tools menüben az ESP32 kártyák közöl válasszuk a Nologo ESP32-C3

Supermini kártyát és konfiguráljuk az ábra szerint! Csatlakoztatás után válasszuk ki a kártyához csatlakozó soros portot! (pl. COM7)

Sketch Too	Auto Format	Ctrl+T			
	Archive Sketch				
scan	Fix Encoding & Reload	Chill Children			
nclud	Manage Libraries	Ctri+Shift+I			
nclud	Serial Monitor	Ctrl+Shift+M			
nclue	Serial Plotter	Ctrl+Snitt+L			
101 U	WiFi101 / WiFiNINA Firmware Updater				
id se	ESP8266 Sketch Data Upload				Adafruit Sparkle Motion (ESP32)
Seria	Board: "Nologo ESP32C3 Super Mini"	2	Boards Manager		Adafruit Sparkle Motion Mini (ESP3)
delay	Upload Speed: "921600"	>	Arduino AVR Boards	>	NodeMCU-32S
int :	USB Mode: "Hardware CDC and JTAG"	>	Arduino Mbed OS RP2040 Boards	•	Nologo ESP32C3 Super Mini
esp t	USB CDC On Boot: "Enabled"	>	ESP32 Arduino	>	Nologo ESP32S3 Pico
	CPU Frequency: "160MHz (WiFi)"	>	ESP8266 Boards (3.0.2)	>	MH ET LIVE ESP32DevKIT
for	Flash Frequency: "80MHz"	>		1	MH ET LIVE ESP32MiniKit
bor	Flash Mode: "QIO"	>			ESP32vn IoT Uno
for	Partition Scheme: "Default 4MB with spiffs (1.2MB APP/1.5MB SPIFFS)"	>			DOIT ESP32 DEVKIT V1
101	Core Debug Level: "None"	>	B[0]); I++) {		DOIT ESPduino32
	Erase All Flash Before Sketch Upload: "Disabled"	>			OLIMEX ESP32-EVB
	JTAG Adapter: "Disabled"	>			OLIMEX ESP32-GATEWAY
	Port: "COM7 (ESP32 Family Device)"	>			OLIMEX ESP32-POE
_	Get Board Into				OLIMEX ESP32-POE-ISO
}	Programmer				OLIMEX ESP32-DevKit-LiPo
if	Pure Pootloader	,			OLIMEX ESP32-S2-DevKit-Lipo
1000	buin booloader				OUNTRY FORDER OF Dealth Line LICE

Debreceni Megtestesülés Plébánia

Hobbielektronika 2024/2025

7

Az ESP32-C3 Super Mini kártya

- * A Maker Go ESP32-C3 Super Mini egy kompakt fejlesztői kártya
- Mikrovezérlő: ESP32-C3, 32 bites RISC-V architektúra
- Órajel: Akár 160 MHz
- * Memória: 400 KB SRAM, 384 KB ROM
- Programtároló: 4 MB Flash memória (a képen látható ESP32-C3 FH4x felratú MCU már az IC tokban tartalmazza a 4 MB flash memóriát)
- * Wi-Fi: 802.11 b/g/n (2.4 GHz)
- Bluetooth: Bluetooth 5.0 LE
- GPIO: 16 általános célú bemenet/kimenet (GPIO), melyek közül 13 van kivezetve
- Interfészek: SPI, I2C, UART, ADC, PWM

ESP32-C3 funkcionális blokkdiagram

Hobbielektronika 2024/2025

Támogatott perifériák

◆ Az ESP32 Arduino Core 3.1.1 az alábbi perifériákat támogatja ✤ Az ESP WROOM-32-höz képest eltérés a CPU, nincs hagyományos Bluetooth, Hall szenzor, DAC, SDMMC és érintésérzékelés periféria Az ESP32-C3 előnye a kis fogyasztás és a beépített USB CDC/JTAG periféria

Peripheral	ESP32	ESP32-S2	ESP32-C3	ESP32-S3
ADC	Yes	Yes	Yes 12 bit	Yes
Bluetooth	Yes	Not Supported	Not Supported	Not Supported
BLE	Yes	Not Supported	Yes	Yes
DAC	Yes	Yes	Not Supported	Not Supported
Ethernet	Yes	Not Supported	Not Supported	Not Supported
GPIO	Yes	Yes	Yes	Yes
Hall Sensor	Yes	Not Supported	Not Supported	Not Supported
I2C	Yes	Yes	Yes	Yes
125	Yes	Yes	Yes	Yes
LEDC	Yes	Yes	Yes	Yes
Motor PWM	No	Not Supported	Not Supported	Not Supported
Pulse Counter	No	No	No	No
RMT	Yes	Yes	Yes	Yes
SDIO	No	No	No	No
SDMMC	Yes	Not Supported	Not Supported	Yes
Timer	Yes	Yes	Yes	Yes
Temp. Sensor	Not Supported	Yes	Yes	Yes
Touch	Yes	Yes	Not Supported	Yes
TWAI	No	No	No	No
UART	Yes	Yes	Yes	Yes
USB	Not Supported	Yes	Yes Only CDC/ JTAG	Yes
Wi-Fi	Yes	Yes	Yes	Yes

Hobbielektronika 2024/2025

11

Az ESP32 C3 Super Mini kártya kivezetései

Megjegyzés: Az A5 analóg bemenet (ADC2) nem használható, ha a WiFi használatban van!

Hobbielektronika 2024/2025

12

Digitális I/O

- pinMode(pin, mode) beállítja a megnevezett kivezetés üzemmódját, ahol: pin – a kiválasztott GPIO kivezetés sorszáma (0 – 39, de nem mindegyik elérhető) mode – üzemmód: INPUT, INPUT_PULLUP, INPUT_PULLDOWN, vagy OUTPUT az INPUT_PULLUP belső felhúzást, az INPUT_PULLDOWN belső lehúzást jelent Ezt a függvényt többnyire a program setup() szekciójában használjuk, a kezdeti beállításoknál
- digitalRead(pin) beolvassa a megadott sorszámú kivezetésen a pillanatnyi jelszintet
 pin a kiválasztott GPIO kivezetés sorszáma, a visszatérési érték pedig a pillanatnyi jelszint, ami 0 (alacsony), vagy 1 (magas) értékű lehet
- digitalWrite(*pin, level*) beállítja a korábban kimenetnek állított kivezetésen a jelszintet

pin – a kiválasztott GPIO kivezetés sorszáma level – a kimeneti szint, ami LOW (= 0, alacsony), vagy HIGH (=1, magas) értékű lehet

ESP32_ledblink.ino – egyszerű LED villogtatás

- Villogtassuk a GPIO0 kimenetre kötött LED-et! A LED áramát egy soros ellenállással (pl. 220 Ω) korlátozhatjuk
- Ha a LED katódját a GND-re kötjük, az anódját pedig az áramkorlátozó ellenálláson keresztül a GPIO0 kivezetésre, akkor a kimenet magas szintje gyújtja ki a LED-et
- A késleltetéshez a beépített delay() függvényt használjuk, a késleltetés idejét milliszekundumokban kell megadni
- Megjegyzés: GPIO8, vagy LED_BUILTIN használatával a beépített LED villog, de a katód vezérlése miatt fordított logikával (lásd: Blinky.ino)

14

```
void setup() {
   pinMode(0, OUTPUT); // GPI00 legyen digitális kimenet
}
void loop() {
   digitalWrite(0, HIGH); // GPI00 aktív magas
   delay(1000); // egy másodperc késleltetés
   digitalWrite(0, LOW); // GPI00 aktív alacsony
   delay(1000); // egy másodperc késleltetés
}
```


Debreceni Megtestesülés Plébánia

Hobbielektronika 2024/2025

ESP32_button2led.ino – nyomógomb állapotának beolvasása

- Feladat: A két LED a kapcsoló állásától függően világítson:
 - Ha a kapcsoló nyitva van, a piros LED világítson!
 - Ha a kapcsoló zárva van, a zöld LED világítson!
- * A nyomógomb állapotát a **digitalRead()** függvénnyel vizsgáljuk!

```
#define RED LED
                  20
#define GREEN LED 21
#define BUTTON
                   9
void setup() {
 pinMode(RED LED,OUTPUT);
                                // legyen kimenet
 pinMode(GREEN_LED,OUTPUT);
                                // legyen kimenet
 pinMode(BUTTON, INPUT PULLUP);
                                    Bemenet belső felhúzással
                               11
void loop()
 int state = digitalRead(BUTTON)
 digitalWrite(RED_LED, state); // világít, ha state = HIGH
 digitalWrite(GREEN_LED,!state);// világít, ha state = LOW
                                    pergésmentesítő késleltetés
 delay(20);
```


ADC – Analóg-digitális átalakító

* Az ADC feladata az, hogy diszkrét kódokká alakítsa a bejövő analóg jelet

Analóg bemenetek

* Két ADC van, de ADC2 csak a WiFi letiltott állapotában használható

Hobbielektronika 2024/2025

Az analóg-digitális átalakítót kezelő függvények

Az **ADC**-vel analóg jeleket mérhetünk meg, ami hasznos egy potméterrel leosztott feszültség vagy egy analóg szenzor jele számszerű értékének meghatározására Az **ADC** "egylövetű" (OneShot) módjához használható API függvények:

- analogRead(pin) megméri a megnevezett bemeneten a feszültséget és visszaad egy számot (alapértelmezetten 12 bit a felbontás és kb. 2,5 V a méréshatár)
- analogReadMillivolts(pin) megméri a megnevezett bemeneten a feszültséget és visszaadja a millivoltokban mért feszültség értékét
- analogReadResolution(resolution) beállítja a felbontást (9 –12 bit, default: 12)
- analogSetAttenuation(*attenuation*) méréshatár beállítása az összes bemenetre vonatkozóan (ADC_ATTEN_DB_0: 750 mV, ADC_ATTEN_DB_2_5: 1055 mV, ADC_ATTEN_DB_6: 1300 mV, ADC_ATTEN_DB_11: 2500 mV)
- analogSetPinAttenuation(*pin, attenuation*) a méréshatár beállítása egy adott lábra vonatkozóan

ADC_OneShot.ino

 Az alábbi programocska a OneShot mód használatát mutatja be: A GPIO2 (A2) bemenetre kapcsolt feszültséget mérjük meg

const int AN2 = 2	// GPIO2 (A2) bemenet	🙁 СОМ6	- 0	×
<pre>void setup() { Serial.begin(115200); analogReadResolution(12); analogSetAttenuation(ADC_11d }</pre>	// 12-bit felbontás b); // Méréshatár 0-2.5V	ADC millivolts value = 759 ADC analog value = 1049 ADC millivolts value = 759 ADC analog value = 1051 ADC millivolts value = 767 ADC analog value = 1052		Send
<pre>did loop() { // read the analog / millivolts value for pin 2: int analogValue = analogRead(AN2); int analogVolts = analogReadMilliVolts(AN2); // print out the values you read:</pre>		ADC millivolts value = 769 ADC analog value = 1053 ADC millivolts value = 767 ADC analog value = 1050		
<pre>// print out the values you Serial.printf("ADC analog va Serial.printf("ADC millivolt delay(2000): // delay between the set way a s</pre>	<pre>read: lue = %d\n",analogValue); s value = %d\n",analogVolts); en reads</pre>	ADC millivolts value = 767 ADC analog value = 1063 ADC millivolts value = 767 ADC analog value = 1049 ADC millivolts value = 780		×
}		Autoscroll Show timestamp	Newline \checkmark 115200 baud \checkmark 0	Clear output

ESP32 MCP9700.ino – analóg hőmérő használata

3-Pin TO-92

```
const int analog_pin = 2;
  Serial.begin(115200);
  analogReadResolution(12); // 12-bit felbontás
  analogSetAttenuation(ADC 11db); // Méréshatár 0-2,5 V
  uint32 t millivolts = 0;
  for(int i=0; i<1024; i++) {</pre>
   millivolts += analogReadMilliVolts(AN2);
 millivolts = millivolts>>10;
  float tempC = (millivolts -500) / 10.0;
  Serial.print("Voltage = ");
  Serial.print(millivolts);
  Serial.print(" mV Temperature = ");
  Serial.print(tempC);
  Serial.println(" °C");
```

ESP32_MCP9700.ino - futási eredmény

COM6								_			×
											Send
Voltage	=	755	mV	Temperature	=	25.50	°C				^
Voltage	=	754	mV	Temperature	=	25.40	°C				
Voltage	=	754	mV	Temperature	=	25.40	°C				
Voltage	=	754	mV	Temperature	=	25.40	°C				
Voltage	=	754	mV	Temperature	=	25.40	°C				
Voltage	=	754	mV	Temperature	=	25.40	°C				
Voltage	=	754	mV	Temperature	=	25.40	°C				
Voltage	=	754	mV	Temperature	=	25.40	°C				
Voltage	=	754	mV	Temperature	=	25.40	°C				
Voltage	=	754	mV	Temperature	=	25.40	°C				
Voltage	=	753	mV	Temperature	=	25.30	°C				
Voltage	=	754	mV	Temperature	=	25.40	°C				
Voltage	=	754	mV	Temperature	=	25.40	°C				
Voltage	=	754	mV	Temperature	=	25.40	°C				
											~
Autoscroll	5	Show tim	nestam	p		Newline	\sim	115200 ba	ud	~ C	lear output

Hobbielektronika 2024/2025

21

wifi_scan.ino

Felderítjük a WiFi hálózatot (forrás: <u>https://linuxhaxor.net/code/arduino-support-esp32-c3.html</u>)

```
#include "WiFi.h"
void setup() {
  Serial.begin(115200);
  Serial.println("Scanning available networks...");
 WiFi.mode(WIFI_STA); // station mode
 WiFi.disconnect(); delay(100);
}
void loop() {
  Serial.print("Scan start ... "); int n = WiFi.scanNetworks(); Serial.print(n);
  Serial.println(" network(s) found");
  for (int i = 0; i < n; i++) { Serial.printf("%d: %s, Ch:%d (%ddBm) %s ", i+1,</pre>
     WiFi.SSID(i).c_str(), WiFi.channel(i), WiFi.RSSI(i), WiFi.encryptionType(i) ==
     WIFI AUTH OPEN ? "open" : "");
     uint8 t* cc = WiFi.BSSID(i);
     for (int k = 0; k < 6; k++) { Serial.print(*cc, HEX);
       if (k != 5) Serial.print(":");
       cc++;
     Serial.println("");
  }
  Serial.println(""); delay(5000); // 5 sec delay
}
```

wifi_scan.ino futási eredménye

Hobbielektronika 2024/2025

23

Csatlakozás a WiFi hálózathoz

- Az ESP32 Wi-Fi perifériája és az ESP32 Arduino Core részét képező <u>WiFi programkönyvtár</u> lehetővé teszi, hogy a helyi hálózatra csatlakozzunk (kliensként STA módban, vagy elérési pontként AP módban)
- Most a kliens (STA) módot fogjuk használni

 A személyes adatokat kiszerveztük egy fejléc állományba, amelyet a Vázlatfüzet (Sketchbook) mappa libraries/secrets almappájában helyeztünk el

secrets.h

#define WIFI_SSID MY_SSID
#define WIFI_PASS MY_PASSWORD

ESP32_sntp.ino

```
#include <WiFi.h>
#include "time.h"
#include "secrets.h"
// TimeZone rule for Europe/Budapest including daylight adjustment rules (optional)
// See at: https://leo.leung.xyz/wiki/Timezone
const char* time_zone = "CET-1CEST,M3.5.0,M10.5.0/3";
                                                            Lekérjük a pontos időt a
const char* ntpServer = "hu.pool.ntp.org";
                                                            Közép-Európai Időzónára
struct tm timeinfo;
void setup() {
                                                            vonatkozóan (a téli/nyári
 Serial.begin(115200);
 setup wifi();
               // Connecting to WiFi AP
                                                            időszámítás automatikus
 configTzTime(time zone, ntpServer);
                                                            figyelembevételével)
}
void loop() {
 delay(5000);
 if (getLocalTime(&timeinfo)) {
   Serial.println(&timeinfo, "%A, %B %d %Y %H:%M:%S");
 }
 else {
   Serial.println("*** Failed to obtain time ***");
```

ESP32_sntp.ino futási eredménye

COM6						_		×
								Send
Connecting	to HUAWE	II-2	2.4G-9	9bQR				^
WiFi	connecte	ed						
IP address:	: 192.168	.10	0.50					
Wednesday,	January	15	2025	15:05:44				
Wednesday,	January	15	2025	15:05:49				
Wednesday,	January	15	2025	15:05:54				
Wednesday,	January	15	2025	15:05:59				
Wednesday,	January	15	2025	15:06:04				
Wednesday,	January	15	2025	15:06:09				
Wednesday,	January	15	2025	15:06:14				
Wednesday,	January	15	2025	15:06:19				
Wednesday,	January	15	2025	15:06:24				
Wednesday,	January	15	2025	15:06:29				
Wednesday,	January	15	2025	15:06:34				
Wednesday,	January	15	2025	15:06:39				~
Autoscroll	ow timestamp		oranaad Sia	Newline	~ 11	5200 baud 🚿	~ C	lear output

Hobbielektronika 2024/2025

26

sntp_bmp180_oled.ino

A következő példaprogramban a következő tevékenységek zajlanak:

- Inicializáljuk az SSD1306 kijelzőt és a BMP180 szenzort
- Bejelentkezünk a WiFi hálózatba
- Konfiguráljuk az SNTP klienst az ESP32-n, hogy az eszköz az aktuális időt az NTP szerverről szinkronizálja a megadott CET időzónában
- A loop() függvényben periodikusan kiolvassuk a BMP180 szenzorról a hőmérséklet és a légnyomás értékét,
- majd kiíratjuk az OLED kijelzőre
- A kijelző 3. és 4. sorába pedig kiíratjuk a helyi időt és a dátumot

sntp_bmp180_oled.ino - 3/1.

```
#include <Wire.h>
#include <Adafruit_BMP085.h>
#include <Adafruit SSD1306.h>
#include <WiFi.h>
#include <time.h>
#include "secrets.h"
// TimeZone rule for Europe/Budapest including daylight adjustment rules (optional)
// See at: https://leo.leung.xyz/wiki/Timezone
const char* time_zone = "CET-1CEST,M3.5.0,M10.5.0/3";
const char* ntpServer = "hu.pool.ntp.org";
struct tm timeinfo;
// OLED kijelző beállításai
#define SCREEN_WIDTH 128
#define SCREEN_HEIGHT 64
#define OLED_RESET -1
Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, OLED_RESET);
```

// BMP180 szenzor beállításai Adafruit_BMP085 bmp;

sntp_bmp180_oled.ino - 3/2.

```
void setup() {
  Serial.begin(115200);
 // OLED kijelző inicializálása
  if (!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) {
    Serial.println(F("SSD1306 allocation failed"));
    for (;;);
  }
 display.display();
 delay(2000);
 display.clearDisplay();
     BMP180 szenzor inicializálása
 if (!bmp.begin()) {
    Serial.print("Could not find a valid BMP085 sensor, check wiring!");
   while (1);
  }
 setup_wifi();
 configTzTime(time_zone, ntpServer);
}
```

sntp_bmp180_oled.ino - 3/3.

```
void loop() {
   char buffer[128];
   float temperature = bmp.readTemperature();
   float pressure = bmp.readPressure() / 100.0F;
```

```
display.clearDisplay();
display.setTextSize(1);
display.setTextColor(SSD1306_WHITE);
display.setCursor(0, 0);
display.print("Temperature: ");
display.print(temperature);
display.print(temperature);
display.print(" C");
display.print("Pressure: ");
display.print(pressure);
display.print(pressure);
```

```
// Idő és dátum kiíratása
struct tm timeinfo;
if (!getLocalTime(&timeinfo)) {
   Serial.println("Failed to obtain time");
   return;
```

display.print("Time: "); snprintf(buffer, sizeof(buffer), "%02d:%02d:%02d", timeinfo.tm_hour, timeinfo.tm_min, timeinfo.tm_sec);

```
display.println(buffer);
display.print("Date: ");
snprintf(buffer, sizeof(buffer),
"%04d-%02d-%02d", timeinfo.tm_year + 1900,
timeinfo.tm_mon + 1, timeinfo.tm_mday);
```

```
display.println(buffer);
display.display();
delay(2000);
```

Hobbielektronika 2024/2025