
Hobbielektronika 2024/2025 1 Debreceni Megtestesülés Plébánia

ESP32-C3 mikrovezérlők programozása
CircuitPython környezetben

3. OLED kijelzők használata3. OLED kijelzők használata

Hobbielektronika 2024/2025 2 Debreceni Megtestesülés Plébánia

Felhasznált és ajánlott irodalom
 Python:

 Mark Pilgrim/Kelemen Gábor: Ugorj fejest a Python 3-ba!
 P. Wentworth et al. (ford. Biró Piroska, Szeghalmy Szilvia és Varga Imre):

Hogyan gondolkozz úgy, mint egy informatikus: Tanulás Python 3 segítségével
 CircuitPython:

 Adafruit : https://circuitpython.org/downloads
 Learn Adafruit : Welcome to CircuitPython
 Learn Adafruit : CircuitPython Essentials
 Adafruit : Adafruit CircuitPython API Reference
 Adafruit : github.com/adafruit/Adafruit CircuitPython Bundle

 Online eszközök és támogatás:
 Learn Adafruit : CircuitPython on ESP32 Quick Start
 Adafruit : Adafruit Web Serial ESPTool
 Adafruit : CircuitPython Code Editor

http://people.ubuntu.com/~kelemeng/.ufp3/
https://mtmi.unideb.hu/pluginfile.php/554/mod_resource/content/3/thinkcspy3.pdf
https://circuitpython.org/downloads
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-essentials
https://circuitpython.readthedocs.io/en/latest/docs/index.html
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/circuitpython-with-esp32-quick-start/overview
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://code.circuitpython.org/

Hobbielektronika 2024/2025 3 Debreceni Megtestesülés Plébánia

CircuitPython könyvtárak
 A CircuitPython könyvtárcsomag (Adafruit CircuitPython Bundle)

tartalmazza az összes jelenleg elérhető CircuitPython könyvtárat.

 A CircuitPython könyvtárak Python nyelven íródtak. További funkciókat
biztosítanak és külső eszközöket is támogatnak a CircuitPythonon túl. A
használni kívánt könyvtárakat a mikrovezérlő saját fájlrendszerében egy lib
nevű mappában kell elhelyezni

 A CircuitPython könyvtárcsomagnak a firmware verziójához illeszkedő
változatát kell letölteni és kibontani a számítógépünkre, innen tudjuk majd a
mikrovezérlő kártyára áttölteni azt, amire éppen szükségünk van
 Bundle for Version 9.x: adafruit-circuitpython-bundle-9.x-mpy-20251114.zip
 Bundle for Version 10.x: adafruit-circuitpython-bundle-10.x-mpy-20251114.zip
 Dokumentáció: Adafruit Sponsored Libraries and Drivers on GitHub

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20251114/adafruit-circuitpython-bundle-9.x-mpy-20251114.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20251114/adafruit-circuitpython-bundle-10.x-mpy-20251114.zip
https://docs.circuitpython.org/projects/bundle/en/latest/drivers.html

Hobbielektronika 2024/2025 4 Debreceni Megtestesülés Plébánia

Az I2C kommunikációs csatorna
 Az I2C kommunikációs csatorna bit-soros, órajellel szinkronizált mester – szolga

adatátvitel, ahol a címzés az első bájtban kiküldött címmel történik

 Részletes leírás: ”Az I2C-busz specifikációja és használata”
 A korábbi előadásainkban található ismertetők:

 Az I2C kommunikációs csatorna (2020. február 6.)
 előadásvázlat mintaprogramok

 Az I2C kommunikációs csatorna – 1. rész (2021. február 4.)
 előadásvázlat mintaprogramok video

 Az I2C kommunikációs csatorna – 2. rész (2021. február 18.)
 előadásvázlat mintaprogramok video

http://www.muszeroldal.hu/measurenotes/i2c_hu.pdf
http://megtestesules.info/hobbielektronika/2019/arduino19_10.pdf
http://megtestesules.info/hobbielektronika/2019/arduino19_10.zip
http://megtestesules.info/hobbielektronika/2020/stm32_20_08.pdf
http://megtestesules.info/hobbielektronika/2020/stm32_20_08.zip
https://youtu.be/_7QVfcUr0Pk
http://megtestesules.info/hobbielektronika/2020/stm32_20_09.pdf
http://megtestesules.info/hobbielektronika/2020/stm32_20_09.zip
https://youtu.be/1SqxphAWba4

Hobbielektronika 2024/2025 5 Debreceni Megtestesülés Plébánia

i2c_scan.py
 Az alábbi kis program felderíti és kilistázza az I2C buszon található eszközök

címeit (a program forrása: CircuitPython Essentials)
import time
import board
i2c = board.I2C() # To use default I2C bus (most boards)
To create I2C bus on specific pins
import busio
i2c = busio.I2C(board.IO9, board.IO8)

while not i2c.try_lock():
 pass
try:
 while True:
 print(
 "I2C addresses found:",
 [hex(device_address) for device_address in i2c.scan()],
)
 time.sleep(2)
finally: # unlock the i2c bus when ctrl-c'ing out of the loop
 i2c.unlock()

(SCL, SDA)

(DS3231)

https://learn.adafruit.com/circuitpython-essentials/circuitpython-i2c

Hobbielektronika 2024/2025 6 Debreceni Megtestesülés Plébánia

OLED kijelzők az I2C buszon
 Az I2C OLED grafikus kijelzőkben többnyire SSD1306 vagy SH1106 vezérlő található

(ezek a kijelzők kaphatók SPI változatban is...)
 OLED-nek (organic light-emitting diode-nak) nevezzük a szerves fénykibocsátó diódát,

amelyben a fénykibocsátásért felelős elektrolumineszcens réteg szerves félvezető
vegyület, mely elektromos áram hatására világít

 128x64 (128x32) felbontás
 0.96” vagy 1.3” méret
 I2C cím 0x3C (0x3D)
 3,3V-5.0V tápfeszültség
 Normál/inverz mód
 Grafikus megjelenítés
 Szoftveresen állítható kontraszt
 Tükrözés/elforgatás

Hobbielektronika 2024/2025 7 Debreceni Megtestesülés Plébánia

OLED kijelzők: „Két út van előttem...”
 Az egyszerűbb használati mód az adafruit_ssd1306 meghajtó használata, amely a

busio modul és az adafruit_framebuf (utóbbit telepíteni kell !) segítségével vezérli a
kijelzőt (ami lehet akár I2C, akár SPI illesztőjű)

 Mivel adafruit_sh1106 meghajtó nem állt rendelkezésre, ezért a 2021/22-es tanfolyam
keretében az adafruit_ssd1306 mintájára készítettünk egyet (csak I2C illesztőhöz!)

 A másik lehetőség a displayio modul használata, ehhez adafruit_displayio_ssd1306
és adafruit_displayio_sh1106 meghajtó is található (az utóbbi, sajnos, nem
megfelelően kezeli a 2 pixeles eltolódást, ezért nekünk
kell megoldanunk azt az alkalmazásokban - a legegyszerűbb
megoldás 132x64 felbontásúnak definiálni a kijelzőt és csak
a középső 128x64 képpontot használni)

 A displayio megjelenítés használatakor a
soros porti üzenetek a kijelzőn is megjelennek,
ami néha zavaró lehet!

https://github.com/adafruit/Adafruit_CircuitPython_SSD1306
https://github.com/adafruit/Adafruit_CircuitPython_framebuf

Hobbielektronika 2024/2025 8 Debreceni Megtestesülés Plébánia

A kijelző vezérlésére használható függvények
Az adafruit_ssd1306.SSD1306_I2C osztály az alábbi tagfüggvényeket örökli a
FrameBuffer osztálytól :
 circle(center_x, center_y, radius, color) – kör rajzolása
 fill(color) – a FrameBuffer kitöltése a megadott színnel
 fill_rect(x, y, width, height, color) – kitöltött téglalap rajzolása
 hline(x, y, width, color) – vízszintes vonal rajzolása adott hosszúságig
 line(x0, y0, x1, y1, color) – szakasz rajzolás Bresenham algoritmussal
 pixel(x, y, color=None) – pont rajzolása, vagy színének leolvasása
 rect(x, y, width, height, color, , fill=False) – téglalap rajzolása
 rotation – a kép forgatása 90 fokonként: 0, 1, 2 vagy 3
 scroll(delta_x, delta_y) – FrameBuffer eltolása X és Y irányba.
 text(string, x, y, color, *, font_name='font5x8.bin', size=1) – szöveg megjelenítése
 vline(x, y, height, color) – függőleges vonal rajzolása

https://github.com/adafruit/Adafruit_CircuitPython_SSD1306

Hobbielektronika 2024/2025 9 Debreceni Megtestesülés Plébánia

Telepítendő könyvtárak és segédletek
 Az OLED kijelzők használatához az alábbi

fájlokat kell telepíteni
displayio típusú kijelző kezeléshez

framebuf típusú kijelző kezeléshez

A font5x8.bin fontfájl a program mellett
kell, hogy legyen, nem a lib mappában!

Az adafruit_sh1106.py állomány az előadás mellékletében, a többi könyvtár és segédlet
az adafruit-circuitpython-bundle-10.x-mpy-20251114.zip csomagban található

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20251114/adafruit-circuitpython-bundle-10.x-mpy-20251114.zip

Hobbielektronika 2024/2025 10 Debreceni Megtestesülés Plébánia

Bekötési vázlat
 Bekötésnél ügyeljünk a kijelző felirataira (vannak

más lábkiosztású kijelzők is)

ESP32-C3 SSD1306

G GND

3.3V VDD

IO9 SCK

IO8 SDA

Hobbielektronika 2024/2025 11 Debreceni Megtestesülés Plébánia

SSD1306_oled_simpletest.py
import board, busio, time
import adafruit_ssd1306
i2c = busio.I2C(board.SCL, board.SDA, frequency=400000)
oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c, addr=0x3c)

oled.rotate(0)
oled.fill(0)
oled.line(0,0,10,31,1)
oled.line(10,31,21,0,1)
oled.line(100,0,120,31,1)
oled.line(100,31,120,0,1)
oled.circle(54,32,30,1)
oled.rect(0,0,128,64,1)
oled.show()
while True:
 oled.contrast(0x60)
 time.sleep(2)
 oled.invert(1)
 time.sleep(2)
 oled.invert(0)
 time.sleep(2)
 oled.contrast(0x90)
 time.sleep(2))

A line, circle, rect és hasonló objektumok rajzolását az adafruit_framebuf támogatja

Hobbielektronika 2024/2025 12 Debreceni Megtestesülés Plébánia

SH1106_oled_simpletest.py
import board, busio, time
import adafruit_sh1106
i2c = busio.I2C(board.SCL, board.SDA, frequency=400000)
oled = adafruit_sh1106.SH1106_I2C(128, 64, i2c, addr=0x3c, external_vcc=False)

oled.rotate(0)
oled.fill(0)
oled.line(0,0,10,31,1)
oled.line(10,31,21,0,1)
oled.line(100,0,120,31,1)
oled.line(100,31,120,0,1)
oled.circle(54,32,30,1)
oled.rect(0,0,128,64,1)
oled.show()
while True:
 oled.contrast(0x60)
 time.sleep(2)
 oled.invert(1)
 time.sleep(2)
 oled.invert(0)
 time.sleep(2)
 oled.contrast(0x90)
 time.sleep(2))

A line, circle, rect és hasonló objektumok rajzolását az adafruit_framebuf támogatja

Hobbielektronika 2024/2025 13 Debreceni Megtestesülés Plébánia

SH1106_bouncing_ball.py
 Az Adafruit_CircutPython_SSD1306 programkönyvtár

ssd1306_bouncing_ball.py mintapéldájának átdolgozott változatát nem akarom
részletesen ismertetni, csupán azért teszem közzé, mert néhány hibát ki kellett
javítani benne

 A javítások mellett a saját körrajzoló függvény
helyett az adafruit framebuf-tól megörökölt
körrajzoló függvényét használjuk

 Az I2C busz frekvenciájának megnövelésével
és a lépésköz megduplázásával az animációt
felgyorsítottak

https://github.com/adafruit/Adafruit_CircuitPython_SSD1306/tree/main

Hobbielektronika 2024/2025 14 Debreceni Megtestesülés Plébánia

sh1106_framebuffer_test.py
 Ehhez a programhoz az Adafruit_CircutPython_SSD1306 programkönyvtár

ssd1306_framebuftest.py mintapéldáját használtuk fel, amely a rajzolási és
szövegmegjelenítési funkciókat mutatja be

 Követelmények:
adafruit_framebuf.mpy (a lib mappában)
adafruit_ssd1306.mpy vagy
adafruit_sh1106.py (a lib mappában)
font5x8.bin (a code.py állomány mellett)

https://github.com/adafruit/Adafruit_CircuitPython_SSD1306/tree/main

Hobbielektronika 2024/2025 15 Debreceni Megtestesülés Plébánia

sh1106_framebuffer_test.py – 3/1.
import time, board, busio
from digitalio import DigitalInOut
import adafruit_sh1106
i2c = busio.I2C(board.SCL, board.SDA, frequency=400000) # Create the I2C interface
display = adafruit_sh1106.SH1106_I2C(128, 64, i2c, addr=0x3C)
print("Pixel test")
display.rotate(0) # Display rotation
display.fill(0) # Clear display buffer
display.show() # Copy buffer to screen

display.pixel(0, 0, 1)
display.pixel(display.width // 2, display.height // 2, 1) # Set a pixel in the middle position.
display.pixel(display.width - 1, display.height - 1, 1) # Set a pixel in the opposite corner position
display.show()
time.sleep(0.1)

print("Lines test")
corners = (
 (0, 0),
 (0, display.height - 1),
 (display.width - 1, 0),
 (display.width - 1, display.height - 1),
)

Hobbielektronika 2024/2025 16 Debreceni Megtestesülés Plébánia

sh1106_framebuffer_test.py – 3/2.
display.fill(0)
for corner_from in corners:
 for corner_to in corners:
 display.line(corner_from[0], corner_from[1], corner_to[0], corner_to[1], 1)
display.show()
time.sleep(0.1)

print("Rectangle test")
display.fill(0)
w_delta = display.width / 10
h_delta = display.height / 10
for i in range(11):
 display.rect(0, 0, int(w_delta * i), int(h_delta * i), 1)
display.show()
time.sleep(0.1)

print("Text test")
display.fill(0)
try:
 display.text("hello world", 0, 0, 1)
 display.show()
 time.sleep(1)
 display.fill(0)

Hobbielektronika 2024/2025 17 Debreceni Megtestesülés Plébánia

sh1106_framebuffer_test.py – 3/3.
 char_width = 6
 char_height = 8
 chars_per_line = display.width // 6
 for i in range(255):
 x = char_width * (i % chars_per_line)
 y = char_height * (i // chars_per_line)
 display.text(chr(i), x, y, 1)
 display.show()

except OSError:
 print(
 "To test the framebuf font setup, you'll need the font5x8.bin file from "
 + "https://github.com/adafruit/Adafruit_CircuitPython_framebuf/blob/main/examples/"
 + " in the same directory as this script"
)

Megjegyzés: Az eredeti programban except FileNotFoundError: állt, de a
CircuitPythonban nincs ilyen hiba definiálva, ezért helyette ezt kellett írni:
except OSError:

Hobbielektronika 2024/2025 18 Debreceni Megtestesülés Plébánia

OLED kijelzők displayio támogatása
 A következő mintapéldában a displayio könyvtárat fogjuk használni, amely eleve

része a CircuitPython firmware csomagnak
 A kijelző kezeléséhez azonban telepítenünk kell az

adafruit_displayio_ssd1306.mpy vagy adafruit_displayio_sh1106.mpy
könyvtárat (az Adafruit CircuitPython Bundle tartalmazza)

 Megjegyzés: ügyeljünk az elnevezésre, ne keverjük össze ezek nevét az előző
programoknál használt displayio nélküliekkel!

 Telepítenünk kell az adafruit_display_text programkönyvtárat is
 A SH1106_displayio_demo.py példaprogram a kijelző inicializálása után kirajzol

egy nagy fehér téglalapot, annak közepében egy fekete kitöltött téglalapot, s abban
kiír egy szöveget

 A program forrása: az adafruit_displayio_ssd1306 könyvtár mintaprogramja,
amelyen csak apróbb módosításokat eszközöltünk

https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_SSD1306

Hobbielektronika 2024/2025 19 Debreceni Megtestesülés Plébánia

SH1106_displayio_test.py – 2/1.
import board
import displayio
import terminalio
from adafruit_display_text import label
from i2cdisplaybus import I2CDisplayBus
import adafruit_displayio_sh1106 # ez a driver kell a lib mappába

displayio.release_displays()

I2C inicializálás
i2c = board.I2C() # uses board.SCL and board.SDA
display_bus = I2CDisplayBus(i2c, device_address=0x3C)

SH1106 paraméterek
WIDTH = 128 # teljes fizikai szélesség
HEIGHT = 64
BORDER = 5

colstart=2 → X irányú offset
display = adafruit_displayio_sh1106.SH1106(display_bus, width=WIDTH+4, height=HEIGHT, colstart=2)

Megjelenítési kontextus
splash = displayio.Group()
display.root_group = splash

Hobbielektronika 2024/2025 20 Debreceni Megtestesülés Plébánia

SH1106_displayio_test.py – 2/2.
Háttér bitmap (fehér)
color_bitmap = displayio.Bitmap(WIDTH, HEIGHT, 1)
color_palette = displayio.Palette(1)
color_palette[0] = 0xFFFFFF
bg_sprite = displayio.TileGrid(color_bitmap, pixel_shader=color_palette, x=0, y=0)
splash.append(bg_sprite)

Belső fekete téglalap
inner_bitmap = displayio.Bitmap(WIDTH - BORDER * 2, HEIGHT - BORDER * 2, 1)
inner_palette = displayio.Palette(1)
inner_palette[0] = 0x000000
inner_sprite = displayio.TileGrid(inner_bitmap, pixel_shader=inner_palette, x=BORDER, y=BORDER)
splash.append(inner_sprite)

Szöveg
text = " CircuitPython\r\n tanfolyam\r\n Hobbielektronika"
text_area = label.Label(terminalio.FONT, text=text, color=0xFFFF00, x=10, y=15)
splash.append(text_area)

while True:
 pass

Hobbielektronika 2024/2025 21 Debreceni Megtestesülés Plébánia

A displayio modul osztályai
 A displayio modul API dokumentációja
 A Group (vagy a legfelső Group)

végeredményben az, ami a kijelzőn megjelenik
a show() metódus meghívásakor

 A TileGrid Bitmap és Palette elemekből áll
 Bitmap és Palette kapcsolata:

https://circuitpython.readthedocs.io/en/latest/shared-bindings/displayio/

Hobbielektronika 2024/2025 22 Debreceni Megtestesülés Plébánia

SH1106_displayio_test.py – hogy működik?
 Ez az általános gyűjtő objektum:

 splash = displayio.Group()
 display.show(splash)

 A befoglaló fehér téglalap:

 color_bitmap = displayio.Bitmap(128, 64, 1)
 color_palette = displayio.Palette(1)
 color_palette[0] = 0xFFFFFF # White
 bg_sprite = displayio.TileGrid(color_bitmap,
 pixel_shader=color_palette, x=2, y=0)
 splash.append(bg_sprite) SH1106 esetén eltolás kell

 A belső fekete téglalap:

 inner_bitmap=displayio.Bitmap(120,56,1) # Draw smaller rectangle
 inner_palette = displayio.Palette(1)
 inner_palette[0] = 0x000000 # Black
 inner_sprite = displayio.TileGrid(inner_bitmap,
 pixel_shader=inner_palette, x=6, y=4)
 splash.append(inner_sprite) SH1106 esetén eltolás kell

Hobbielektronika 2024/2025 23 Debreceni Megtestesülés Plébánia

SH1106_displayio_test.py – hogy működik?
 Szövegcímke (Text Label) rajzolása:

 text = " CircuitPython\r\n tanfolyam\r\n Hobbielektronika"
 text_area = label.Label(terminalio.FONT, text=text, color=0xFFFF00, x=10, y=15)
 splash.append(text_area)
 A CircuitPython Display_Text Library tananyag szerint az

adafruit_display_text modul kétféle szövegcímke típust kezel,
közülük úgy lehet választani, hogy a
from adafruit_display_text import label sor helyett

from adafruit_display_text import bitmap_label sort írunk
 Label (hagyományos) BitmapLabel

https://learn.adafruit.com/circuitpython-display_text-library

Hobbielektronika 2024/2025 24 Debreceni Megtestesülés Plébánia

SH1106_displayio_test_bitmaplabel.py
 A BitmapLabel-re történő áttéréshez csak minimális változtatást kell tennünk

az előző SH1106_displayio_test.py programon:
 A program elején a

from adafruit_display_text import label sor helyett

from adafruit_display_text import bitmap_label sort írunk
 A szövegcímke (BitmapLabel) rajzolása pedig így módosul:

 text = " CircuitPython\n tanfolyam\n Hobbielektronika"
 text_area = bitmap_label.Label(terminalio.FONT, text=text, color=0xFFFF00, x=10, y=15)
 splash.append(text_area)

Hobbielektronika 2024/2025 25 Debreceni Megtestesülés Plébánia

Az ESP32 C3 Super Mini kártya kivezetései

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

