
Hobbielektronika 2024/2025                                 1                         Debreceni Megtestesülés Plébánia

ESP32-C3 mikrovezérlők programozása 
CircuitPython környezetben

3. OLED kijelzők használata3. OLED kijelzők használata
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Felhasznált és ajánlott irodalom
 Python:

 Mark Pilgrim/Kelemen Gábor: Ugorj fejest a Python 3-ba!
 P. Wentworth et al. (ford. Biró Piroska, Szeghalmy Szilvia és Varga Imre):

Hogyan gondolkozz úgy, mint egy informatikus: Tanulás Python 3 segítségével
 CircuitPython:

 Adafruit : https://circuitpython.org/downloads
 Learn Adafruit : Welcome to CircuitPython
 Learn Adafruit : CircuitPython Essentials
 Adafruit : Adafruit CircuitPython API Reference
 Adafruit : github.com/adafruit/Adafruit CircuitPython Bundle   

 Online eszközök és támogatás:
 Learn Adafruit : CircuitPython on ESP32 Quick Start
 Adafruit : Adafruit Web Serial ESPTool 
 Adafruit : CircuitPython Code Editor

http://people.ubuntu.com/~kelemeng/.ufp3/
https://mtmi.unideb.hu/pluginfile.php/554/mod_resource/content/3/thinkcspy3.pdf
https://circuitpython.org/downloads
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-essentials
https://circuitpython.readthedocs.io/en/latest/docs/index.html
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/circuitpython-with-esp32-quick-start/overview
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://code.circuitpython.org/
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CircuitPython könyvtárak
 A CircuitPython könyvtárcsomag (Adafruit CircuitPython Bundle) 

tartalmazza az összes jelenleg elérhető CircuitPython könyvtárat. 

 A CircuitPython könyvtárak Python nyelven íródtak. További funkciókat 
biztosítanak és külső eszközöket is támogatnak a CircuitPythonon túl. A 
használni kívánt könyvtárakat a mikrovezérlő saját fájlrendszerében egy lib 
nevű mappában kell elhelyezni 

 A CircuitPython könyvtárcsomagnak a firmware verziójához illeszkedő 
változatát kell letölteni és kibontani a számítógépünkre, innen tudjuk majd a 
mikrovezérlő kártyára áttölteni azt, amire éppen szükségünk van
 Bundle for Version   9.x: adafruit-circuitpython-bundle-9.x-mpy-20251114.zip
 Bundle for Version 10.x: adafruit-circuitpython-bundle-10.x-mpy-20251114.zip
 Dokumentáció: Adafruit Sponsored Libraries and Drivers on GitHub

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20251114/adafruit-circuitpython-bundle-9.x-mpy-20251114.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20251114/adafruit-circuitpython-bundle-10.x-mpy-20251114.zip
https://docs.circuitpython.org/projects/bundle/en/latest/drivers.html
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Az I2C kommunikációs csatorna
 Az I2C kommunikációs csatorna bit-soros, órajellel szinkronizált mester – szolga 

adatátvitel, ahol a címzés az első bájtban kiküldött címmel történik

 Részletes leírás:  ”Az I2C-busz specifikációja és használata” 
 A korábbi előadásainkban található ismertetők:  

 Az I2C kommunikációs csatorna (2020. február 6.) 
 előadásvázlat mintaprogramok

 Az I2C kommunikációs csatorna – 1. rész (2021. február 4.) 
 előadásvázlat mintaprogramok video

 Az I2C kommunikációs csatorna – 2. rész (2021. február 18.) 
 előadásvázlat mintaprogramok video

http://www.muszeroldal.hu/measurenotes/i2c_hu.pdf
http://megtestesules.info/hobbielektronika/2019/arduino19_10.pdf
http://megtestesules.info/hobbielektronika/2019/arduino19_10.zip
http://megtestesules.info/hobbielektronika/2020/stm32_20_08.pdf
http://megtestesules.info/hobbielektronika/2020/stm32_20_08.zip
https://youtu.be/_7QVfcUr0Pk
http://megtestesules.info/hobbielektronika/2020/stm32_20_09.pdf
http://megtestesules.info/hobbielektronika/2020/stm32_20_09.zip
https://youtu.be/1SqxphAWba4
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i2c_scan.py
 Az alábbi kis program felderíti és kilistázza az I2C buszon található eszközök 

címeit (a program forrása:  CircuitPython Essentials)
import time
import board
i2c = board.I2C()          # To use default I2C bus (most boards)
# To create I2C bus on specific pins
# import busio             
# i2c = busio.I2C(board.IO9, board.IO8)  

while not i2c.try_lock():
    pass
try:
    while True:
        print(
            "I2C addresses found:",
            [hex(device_address) for device_address in i2c.scan()],
        )
        time.sleep(2)
finally:  # unlock the i2c bus when ctrl-c'ing out of the loop
    i2c.unlock()

( SCL,  SDA)

( DS3231)

https://learn.adafruit.com/circuitpython-essentials/circuitpython-i2c
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OLED kijelzők az I2C buszon
 Az I2C OLED grafikus kijelzőkben többnyire SSD1306 vagy SH1106 vezérlő található 

(ezek a kijelzők kaphatók SPI változatban is...)
 OLED-nek (organic light-emitting diode-nak) nevezzük a szerves fénykibocsátó diódát, 

amelyben  a fénykibocsátásért felelős elektrolumineszcens réteg szerves félvezető 
vegyület, mely elektromos áram hatására világít

 128x64 (128x32) felbontás
 0.96” vagy 1.3” méret
 I2C cím 0x3C (0x3D)
 3,3V-5.0V tápfeszültség
 Normál/inverz mód
 Grafikus megjelenítés
 Szoftveresen állítható kontraszt
 Tükrözés/elforgatás
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OLED kijelzők: „Két út van előttem...”
 Az egyszerűbb használati mód az adafruit_ssd1306 meghajtó használata, amely a 

busio modul és az adafruit_framebuf (utóbbit telepíteni kell !) segítségével vezérli a 
kijelzőt (ami lehet akár I2C, akár SPI illesztőjű)

 Mivel adafruit_sh1106 meghajtó nem állt rendelkezésre, ezért a 2021/22-es tanfolyam 
keretében az adafruit_ssd1306 mintájára készítettünk egyet (csak I2C illesztőhöz!)

 A másik lehetőség a displayio modul használata, ehhez adafruit_displayio_ssd1306 
és adafruit_displayio_sh1106 meghajtó is található (az utóbbi, sajnos, nem 
megfelelően kezeli a 2 pixeles eltolódást, ezért nekünk 
kell megoldanunk azt az alkalmazásokban - a legegyszerűbb
megoldás 132x64 felbontásúnak definiálni a kijelzőt és csak 
a középső 128x64 képpontot használni)

 A displayio megjelenítés használatakor a 
soros porti  üzenetek a kijelzőn is megjelennek,
ami néha zavaró lehet!

https://github.com/adafruit/Adafruit_CircuitPython_SSD1306
https://github.com/adafruit/Adafruit_CircuitPython_framebuf
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A kijelző vezérlésére használható függvények
Az adafruit_ssd1306.SSD1306_I2C osztály az alábbi tagfüggvényeket örökli a 
FrameBuffer osztálytól :
 circle(center_x, center_y, radius, color) – kör rajzolása 
 fill(color) – a FrameBuffer kitöltése a megadott színnel
 fill_rect(x, y, width, height, color) – kitöltött téglalap rajzolása  
 hline(x, y, width, color) – vízszintes vonal rajzolása adott hosszúságig
 line(x0, y0, x1, y1, color) – szakasz rajzolás Bresenham algoritmussal
 pixel(x, y, color=None) – pont rajzolása, vagy színének leolvasása
 rect(x, y, width, height, color, , fill=False) – téglalap rajzolása
 rotation – a kép forgatása 90 fokonként: 0, 1, 2 vagy 3
 scroll(delta_x, delta_y) – FrameBuffer eltolása X és Y irányba.
 text(string, x, y, color, *, font_name='font5x8.bin', size=1) – szöveg megjelenítése
 vline(x, y, height, color) – függőleges vonal rajzolása 

https://github.com/adafruit/Adafruit_CircuitPython_SSD1306
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Telepítendő könyvtárak és segédletek
 Az OLED kijelzők használatához az alábbi 

fájlokat kell telepíteni
displayio típusú kijelző kezeléshez

framebuf típusú kijelző kezeléshez

A font5x8.bin fontfájl a program mellett 
kell, hogy legyen, nem a lib mappában!

Az adafruit_sh1106.py állomány az előadás mellékletében, a többi könyvtár és segédlet 
az adafruit-circuitpython-bundle-10.x-mpy-20251114.zip csomagban  található

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20251114/adafruit-circuitpython-bundle-10.x-mpy-20251114.zip
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Bekötési vázlat
 Bekötésnél ügyeljünk a kijelző felirataira (vannak 

más lábkiosztású kijelzők is)

ESP32-C3 SSD1306

G GND

3.3V VDD

IO9 SCK

IO8 SDA
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SSD1306_oled_simpletest.py
import board, busio, time
import adafruit_ssd1306
i2c = busio.I2C(board.SCL, board.SDA, frequency=400000)
oled = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c, addr=0x3c)

oled.rotate(0)
oled.fill(0)
oled.line(0,0,10,31,1)
oled.line(10,31,21,0,1)
oled.line(100,0,120,31,1)
oled.line(100,31,120,0,1)
oled.circle(54,32,30,1)
oled.rect(0,0,128,64,1)
oled.show()
while True:
    oled.contrast(0x60)
    time.sleep(2)
    oled.invert(1)
    time.sleep(2)
    oled.invert(0)
    time.sleep(2)
    oled.contrast(0x90)
    time.sleep(2))

A line, circle, rect és hasonló objektumok rajzolását az adafruit_framebuf támogatja
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SH1106_oled_simpletest.py
import board, busio, time
import adafruit_sh1106
i2c = busio.I2C(board.SCL, board.SDA, frequency=400000)
oled = adafruit_sh1106.SH1106_I2C(128, 64, i2c, addr=0x3c, external_vcc=False)

oled.rotate(0)
oled.fill(0)
oled.line(0,0,10,31,1)
oled.line(10,31,21,0,1)
oled.line(100,0,120,31,1)
oled.line(100,31,120,0,1)
oled.circle(54,32,30,1)
oled.rect(0,0,128,64,1)
oled.show()
while True:
    oled.contrast(0x60)
    time.sleep(2)
    oled.invert(1)
    time.sleep(2)
    oled.invert(0)
    time.sleep(2)
    oled.contrast(0x90)
    time.sleep(2))

A line, circle, rect és hasonló objektumok rajzolását az adafruit_framebuf támogatja
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SH1106_bouncing_ball.py
 Az Adafruit_CircutPython_SSD1306 programkönyvtár 

ssd1306_bouncing_ball.py mintapéldájának átdolgozott változatát nem akarom 
részletesen ismertetni, csupán azért teszem közzé, mert néhány hibát ki kellett 
javítani benne

 A javítások mellett a saját körrajzoló függvény 
helyett az adafruit framebuf-tól megörökölt 
körrajzoló függvényét használjuk

 Az I2C busz frekvenciájának megnövelésével 
és a lépésköz megduplázásával az animációt 
felgyorsítottak

https://github.com/adafruit/Adafruit_CircuitPython_SSD1306/tree/main
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sh1106_framebuffer_test.py
 Ehhez a programhoz az Adafruit_CircutPython_SSD1306 programkönyvtár 

ssd1306_framebuftest.py mintapéldáját használtuk fel, amely a rajzolási és 
szövegmegjelenítési funkciókat mutatja be

 Követelmények:
adafruit_framebuf.mpy (a lib mappában)
adafruit_ssd1306.mpy vagy 
adafruit_sh1106.py ( a lib mappában)
font5x8.bin (a code.py állomány mellett)

https://github.com/adafruit/Adafruit_CircuitPython_SSD1306/tree/main
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sh1106_framebuffer_test.py – 3/1.
import time, board, busio
from digitalio import DigitalInOut
import adafruit_sh1106
i2c = busio.I2C(board.SCL, board.SDA, frequency=400000)        # Create the I2C interface
display = adafruit_sh1106.SH1106_I2C(128, 64, i2c, addr=0x3C)
print("Pixel test")
display.rotate(0)    # Display rotation
display.fill(0)      # Clear display buffer
display.show()       # Copy buffer to screen

display.pixel(0, 0, 1)
display.pixel(display.width // 2, display.height // 2, 1) # Set a pixel in the middle position.
display.pixel(display.width - 1, display.height - 1, 1)   # Set a pixel in the opposite corner position
display.show()
time.sleep(0.1)

print("Lines test")
corners = (
    (0, 0),
    (0, display.height - 1),
    (display.width - 1, 0),
    (display.width - 1, display.height - 1),
)
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sh1106_framebuffer_test.py – 3/2.
display.fill(0)
for corner_from in corners:
    for corner_to in corners:
        display.line(corner_from[0], corner_from[1], corner_to[0], corner_to[1], 1)
display.show()
time.sleep(0.1)

print("Rectangle test")
display.fill(0)
w_delta = display.width / 10
h_delta = display.height / 10
for i in range(11):
    display.rect(0, 0, int(w_delta * i), int(h_delta * i), 1)
display.show()
time.sleep(0.1)

print("Text test")
display.fill(0)
try:
    display.text("hello world", 0, 0, 1)
    display.show()
    time.sleep(1)
    display.fill(0)
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sh1106_framebuffer_test.py – 3/3.
    char_width = 6
    char_height = 8
    chars_per_line = display.width // 6
    for i in range(255):
        x = char_width * (i % chars_per_line)
        y = char_height * (i // chars_per_line)
        display.text(chr(i), x, y, 1)
    display.show()

except OSError:
    print(
        "To test the framebuf font setup, you'll need the font5x8.bin file from "
        + "https://github.com/adafruit/Adafruit_CircuitPython_framebuf/blob/main/examples/"
        + " in the same directory as this script"
    )

Megjegyzés: Az eredeti programban except FileNotFoundError: állt, de a 
CircuitPythonban nincs ilyen hiba definiálva, ezért helyette ezt kellett írni: 
except OSError:
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OLED kijelzők displayio támogatása
 A következő mintapéldában a displayio könyvtárat fogjuk használni, amely eleve 

része a CircuitPython firmware csomagnak
 A kijelző kezeléséhez azonban telepítenünk kell az 

adafruit_displayio_ssd1306.mpy vagy adafruit_displayio_sh1106.mpy 
könyvtárat (az Adafruit CircuitPython Bundle tartalmazza)

 Megjegyzés: ügyeljünk az elnevezésre, ne keverjük össze ezek nevét az előző 
programoknál használt displayio nélküliekkel!

 Telepítenünk kell az adafruit_display_text programkönyvtárat is 
 A SH1106_displayio_demo.py példaprogram a kijelző inicializálása után kirajzol 

egy nagy fehér téglalapot, annak közepében egy fekete kitöltött téglalapot, s abban 
kiír egy szöveget

 A program forrása: az adafruit_displayio_ssd1306 könyvtár mintaprogramja, 
amelyen csak apróbb módosításokat eszközöltünk

https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_SSD1306
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SH1106_displayio_test.py – 2/1.
import board
import displayio
import terminalio
from adafruit_display_text import label
from i2cdisplaybus import I2CDisplayBus
import adafruit_displayio_sh1106  # ez a driver kell a lib mappába

displayio.release_displays()

# I2C inicializálás
i2c = board.I2C()  # uses board.SCL and board.SDA
display_bus = I2CDisplayBus(i2c, device_address=0x3C)

# SH1106 paraméterek
WIDTH = 128   # teljes fizikai szélesség
HEIGHT = 64
BORDER = 5

# colstart=2 → X irányú offset
display = adafruit_displayio_sh1106.SH1106(display_bus, width=WIDTH+4, height=HEIGHT, colstart=2)

# Megjelenítési kontextus
splash = displayio.Group()
display.root_group = splash
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SH1106_displayio_test.py – 2/2.
# Háttér bitmap (fehér)
color_bitmap = displayio.Bitmap(WIDTH, HEIGHT, 1)
color_palette = displayio.Palette(1)
color_palette[0] = 0xFFFFFF
bg_sprite = displayio.TileGrid(color_bitmap, pixel_shader=color_palette, x=0, y=0)
splash.append(bg_sprite)

# Belső fekete téglalap
inner_bitmap = displayio.Bitmap(WIDTH - BORDER * 2, HEIGHT - BORDER * 2, 1)
inner_palette = displayio.Palette(1)
inner_palette[0] = 0x000000
inner_sprite = displayio.TileGrid(inner_bitmap, pixel_shader=inner_palette, x=BORDER, y=BORDER)
splash.append(inner_sprite)

# Szöveg
text = "   CircuitPython\r\n     tanfolyam\r\n Hobbielektronika"
text_area = label.Label(terminalio.FONT, text=text, color=0xFFFF00, x=10, y=15)
splash.append(text_area)

while True:
    pass
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A displayio modul osztályai
 A displayio modul API dokumentációja
 A Group (vagy a legfelső Group) 

végeredményben az, ami a kijelzőn megjelenik
a show() metódus meghívásakor

 A TileGrid Bitmap és Palette elemekből áll
 Bitmap és Palette kapcsolata:

https://circuitpython.readthedocs.io/en/latest/shared-bindings/displayio/
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SH1106_displayio_test.py – hogy működik?
 Ez az általános gyűjtő objektum:

  
  splash = displayio.Group()
 display.show(splash)

 A befoglaló fehér téglalap:
  

  color_bitmap = displayio.Bitmap(128, 64, 1)
 color_palette = displayio.Palette(1)
 color_palette[0] = 0xFFFFFF  # White
 bg_sprite = displayio.TileGrid(color_bitmap, 
 pixel_shader=color_palette, x=2, y=0)
 splash.append(bg_sprite)           SH1106 esetén eltolás kell

 A belső fekete téglalap: 
 
 inner_bitmap=displayio.Bitmap(120,56,1) # Draw smaller rectangle
 inner_palette = displayio.Palette(1)
 inner_palette[0] = 0x000000  # Black
 inner_sprite = displayio.TileGrid(inner_bitmap,
 pixel_shader=inner_palette, x=6, y=4)
 splash.append(inner_sprite)           SH1106 esetén eltolás kell        
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SH1106_displayio_test.py – hogy működik?
 Szövegcímke (Text Label) rajzolása:

 text = "   CircuitPython\r\n     tanfolyam\r\n Hobbielektronika"
 text_area = label.Label(terminalio.FONT, text=text, color=0xFFFF00, x=10, y=15)
 splash.append(text_area)
 A CircuitPython Display_Text Library tananyag szerint az 

adafruit_display_text modul kétféle szövegcímke típust kezel,
közülük úgy lehet választani, hogy a 
from adafruit_display_text import label                    sor helyett 

from adafruit_display_text import bitmap_label  sort írunk
   Label (hagyományos)                                 BitmapLabel 

 

https://learn.adafruit.com/circuitpython-display_text-library
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SH1106_displayio_test_bitmaplabel.py 
 A BitmapLabel-re történő áttéréshez csak minimális változtatást kell tennünk 

az előző SH1106_displayio_test.py programon:
 A program elején a 

from adafruit_display_text import label                    sor helyett 

from adafruit_display_text import bitmap_label  sort írunk
 A szövegcímke (BitmapLabel) rajzolása pedig így módosul:

    text = "   CircuitPython\n     tanfolyam\n Hobbielektronika"
    text_area = bitmap_label.Label(terminalio.FONT, text=text, color=0xFFFF00, x=10, y=15)
    splash.append(text_area)
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Az ESP32 C3 Super Mini kártya kivezetései
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